图书介绍

弹性力学PDF|Epub|txt|kindle电子书版本网盘下载

弹性力学
  • 沃国纬,王元淳编 著
  • 出版社: 上海:上海交通大学出版社
  • ISBN:7313020104
  • 出版时间:1998
  • 标注页数:429页
  • 文件大小:8MB
  • 文件页数:439页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

弹性力学PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 绪论1

1-1 弹性力学的内容和研究方法1

1-2 弹性力学的基本假设3

1-3 规定的符号5

第2章 平面问题的基本理论8

2-1 平面应力问题和平面应变问题8

2-2 平衡微分方程10

2-3 几何方程和刚体位移12

2-4 物理方程虎克定律18

2-5 边界条件21

2-6 圣维南原理27

2-7 按应力求解平面问题30

2-8 平面问题的应力函数方法33

2-9 按位移求解平面问题40

习题42

第3章 平面问题的直角坐标解法48

3-1 多项式解法48

3-2 矩形梁的纯弯曲50

3-3 悬臂梁自由端受集中力60

3-4 用三角级数求解平面问题67

习题74

第4章 平面问题的极坐标解法80

4-1 极坐标表示的基本方程80

4-2 应力分量的坐标变换式87

4-3 轴对称应力问题88

4-4 厚壁圆筒93

4-5 小圆孔引起的应力集中100

4-6 圆弧曲梁的纯弯曲106

4-7 楔形体问题112

4-8 半无限平面体在边界上受法向力119

4-9 非均匀半无限平面体问题124

4-1 0旋转圆盘132

习题137

第5章 平面问题的复变函数解法144

5-1 应力函数的复变函数表示144

5-2 应力和位移的复变函数表示145

5-3 边界条件的复变函数表示147

5-4 极坐标中应力和位移的复变函数表示149

5-5 保角变换和曲线坐标150

5-6 多连体中应力和位移的单值条件152

5-7 无限大多连体的情形154

5-8 具有单孔的无限大弹性体的复变函数解法157

5-9 椭圆孔口160

5-1 0裂纹尖端附近的应力集中163

习题166

第6章 平面热应力问题168

6-1 平面热传导问题的微分方程168

6-2 平面热弹性力学的基本方程171

6-3 热弹性位移势函数174

6-4 圆环和圆筒的轴对称热应力178

习题182

第7章 空间问题的基本理论184

7-1 平衡微分方程184

7-2 物体内任一点的应力状态186

7-3 主应力应力状态不变量189

7-4 应力张量及其分解194

7-5 几何方程式196

7-6 一点的应变状态200

7-7 应变张量及其分解204

7-8 应力与应变关系207

7-9 各向同性体的广义虎克定律219

7-10 球对称问题的基本方程223

7-11 按应力求解空间问题226

7-12 解的唯一性定理229

习题232

第8章 柱体的扭转与弯曲237

8-1 等截面直杆的扭转237

8-2 椭圆截面杆的扭转243

8-3 薄膜比拟249

8-4 矩形截面杆的扭转254

8-5 薄壁杆件的扭转259

8-6 等截面直杆的弯曲263

习题270

第9章 空间轴对称与弹性接触问题274

9-1 空间轴对称问题的基本方程274

9-2 半空间体受重力及均布压力279

9-3 半空间体在边界上受法向集中力283

9-4 半空间体在边界上圆形区域内受法向分布力286

9-5 两弹性体之间的接触问题291

习题302

第10章 弹性波的传播305

10-1 弹性体的运动微分方程305

10-2 弹性体中的无旋波与等容波306

10-3 平面波的传播308

10-4 表层波的传播311

10-5 球面波的传播314

习题316

第11章 能量原理与变分法317

11-1 泛函和变分的概念317

11-2 弹性体的应变势能319

11-3 虚位移原理与最小势能原理321

11-4 位移变分法333

11-5 位移变分法应用于杆件336

11-6 位移变分法应用于平面问题343

11-7 虚应力原理与最小余能原理349

11-8 应力变分法355

11-9 应力变分法应用于平面问题358

11-10 应力变分法应用于柱体的扭转361

习题365

第12章 薄板的弯曲370

12-1 基本概念和假设370

12-2 弹性曲面的微分方程373

12-3 边界条件382

12-4 四边简支矩形板388

12-5 简支边矩形薄板的纳维叶解法393

12-6 矩形薄板的李维解法398

12-7 用变分法解薄板弯曲问题403

12-8 薄板基本方程的极坐标表达式409

12-9 圆形薄板的轴对称弯曲411

12-10 在静水压力作用下圆薄板的弯曲419

习题424

主要参考文献429

热门推荐