图书介绍
A Mathematical Introduction to ROBOTIC MANIPULATIONPDF|Epub|txt|kindle电子书版本网盘下载
![A Mathematical Introduction to ROBOTIC MANIPULATION](https://www.shukui.net/cover/53/31696276.jpg)
- 著
- 出版社: Inc
- ISBN:0849379814
- 出版时间:1994
- 标注页数:456页
- 文件大小:97MB
- 文件页数:473页
- 主题词:
PDF下载
下载说明
A Mathematical Introduction to ROBOTIC MANIPULATIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 Introduction1
1 Brief History1
2 Multifingered Hands and Dextrous Manipulation8
3 Outline of the Book13
3.1 Manipulation using single robots14
3.2 Coordinated manipulation using multifingered robot hands15
3.3 Nonholonomic behavior in robotic systems16
4 Bibliography18
Chapter 2 Rigid Body Motion19
1 Rigid Body Transformations20
2 Rotational Motion in R322
2.1 Properties of rotation matrices23
2.2 Exponential coordinates for rotation27
2.3 Other representations31
3 Rigid Motion in R334
3.1 Homogeneous representation36
3.2 Exponential coordinates for rigid motion and twists39
3.3 Screws:a geometric description of twists45
4 Velocity of a Rigid Body51
4.1 Rotational velocity51
4.2 Rigid body velocity54
4.3 Velocity of a screw motion58
4.4 Coordinate transformations59
5 Wrenches and Reciprocal Screws61
5.1 Wrenches61
5.2 Screw coordinates for a wrench65
5.3 Reciprocal screws66
6 Summary70
7 Bibliography72
8 Exercises73
Chapter 3 Manipulator Kinematics81
1 Introduction81
2 Forward Kinematics83
2.1 Problem statement83
2.2 The product of exponentials formula85
2.3 Parameterization of manipulators via twists91
2.4 Manipulator workspace95
3 Inverse Kinematics97
3.1 A planar example97
3.2 Paden-Kahan subproblems99
3.3 Solving inverse kinematics using subproblems104
3.4 General solutions to inverse kinematics problems108
4 The Manipulator Jacobian115
4.1 End-effector velocity115
4.2 End-effector forces121
4.3 Singularities123
4.4 Manipulability128
5 Redundant and Parallel Manipulators129
5.1 Redundant manipulators130
5.2 Parallel manipulators132
5.3 Four-bar linkage135
5.4 Stewart platform139
6 Summary144
7 Bibliography146
8 Exercises147
Chapter 4 Robot Dynamics and Control155
1 Introduction155
2 Lagrange’s Equations156
2.1 Basic formulation157
2.2 Inertial properties of rigid bodies160
2.3 Example:Dynamics of a two-link planar robot164
2.4 Newton-Euler equations for a rigid body165
3 Dynamics of Open-Chain Manipulators168
3.1 The Lagrangian for an open-chain robot168
3.2 Equations of motion for an open-chain manipulator169
3.3 Robot dynamics and the product of exponentials formula175
4 Lyapunov Stability Theory179
4.1 Basic definitions179
4.2 The direct method of Lyapunov182
4.3 The indirect method of Lyapunov184
4.4 Examples185
4.5 Lasalle’s invariance principle188
5 Position Control and Trajectory Tracking190
5.1 Problem description190
5.2 Computed torque191
5.3 PD control193
5.4 Workspace control196
6 Control of Constrained Manipulators199
6.1 Dynamics of constrained systems200
6.2 Control of constrained manipulators202
6.3 Example:A planar manipulator moving in a slot203
7 Summary206
8 Bibliography207
9 Exercises208
Chapter 5 Multifingered Hand Kinematics211
1 Introduction to Grasping211
2 Grasp Statics214
2.1 Contact models214
2.2 The grasp map218
3 Force-Closure223
3.1 Formal definition223
3.2 Constructive force-closure conditions224
4 Grasp Planning229
4.1 Bounds on number of required contacts229
4.2 Constructing force-closure grasps232
5 Grasp Constraints234
5.1 Finger kinematics234
5.2 Properties of a multifingered grasp237
5.3 Example:Two SCARA fingers grasping a box240
6 Rolling Contact Kinematics243
6.1 Surface models243
6.2 Contact kinematics248
6.3 Grasp kinematics with rolling253
7 Summary256
8 Bibliography257
9 Exercises259
Chapter 6 Hand Dynamics and Control265
1 Lagrange’s Equations with Constraints265
1.1 Pfaffian constraints266
1.2 Lagrange multipliers269
1.3 Lagrange-d’Alembert formulation271
1.4 The nature of nonholonomic constraints274
2 Robot Hand Dynamics276
2.1 Derivation and properties276
2.2 Internal forces279
2.3 Other robot systems281
3 Redundant and Nonmanipulable Robot Systems285
3.1 Dynamics of redundant manipulators286
3.2 Nonmanipulable grasps290
3.3 Example:Two-fingered SCARA grasp291
4 Kinematics and Statics of Tendon Actuation293
4.1 Inelastic tendons294
4.2 Elastic tendons296
4.3 Analysis and control of tendon-driven fingers298
5 Control of Robot Hands300
5.1 Extending controllers300
5.2 Hierarchical control structures302
6 Summary311
7 Bibliography313
8 Exercises314
Chapter 7 Nonholonomic Behavior in Robotic Systems317
1 Introduction317
2 Controllability and Frobenius’ Theorem321
2.1 Vector fields and flows322
2.2 Lie brackets and Frobenius’ theorem323
2.3 Nonlinear Controllability329
3 Examples of Nonholonomic Systems332
4 Structure of Nonholonomic Systems339
4.1 Classification of nonholonomic distributions340
4.2 Examples of nonholonomic systems,continued341
4.3 Philip Hall basis344
5 Summary346
6 Bibliography347
7 Exercises349
Chapter 8 Nonholonomic Motion Planning355
1 Introduction355
2 Steering Model Control Systems Using Sinusoids358
2.1 First-order controllable systems:Brockett’s system358
2.2 Second-order controllable systems362
2.3 Higher-order systems:chained form systems363
3 General Methods for Steering366
3.1 Fourier techniques367
3.2 Conversion to chained form369
3.3 Optimal steering of nonholonomic systems371
3.4 Steering with piecewise constant inputs375
4 Dynamic Finger Repositioning382
4.1 Problem description382
4.2 Steering using sinusoids383
4.3 Geometric phase algorithm384
5 Summary389
6 Bibliography390
7 Exercises391
Chapter 9 Future Prospects395
1 Robots in Hazardous Environments396
2 Medical Applications for Multifingered Hands398
3 Robots on a Small Scale:Microrobotics399
Appendix A Lie Groups and Robot Kinematics403
1 Differentiable Manifolds403
1.1 Manifolds and maps403
1.2 Tangent spaces and tangent maps404
1.3 Cotangent spaces and cotangent maps405
1.4 Vector fields406
1.5 Differential forms408
2 Lie Groups408
2.1 Definition and examples408
2.2 The Lie algebra associated with a Lie group410
2.3 The exponential map412
2.4 Canonical coordinates on a Lie group414
2.5 Actions of Lie groups415
3 The Geometry of the Euclidean Group416
3.1 Basic properties416
3.2 Metric properties of SE(3)422
3.3 Volume forms on SE(3)430
Appendix B A Mathematica Package for Screw Calculus435
Bibliography441
Index449