图书介绍
运筹学导论 初级篇 英文版 第8版PDF|Epub|txt|kindle电子书版本网盘下载
- (美)Hamdy A.Taha等著 著
- 出版社: 北京:人民邮电出版社
- ISBN:711516066X
- 出版时间:2007
- 标注页数:550页
- 文件大小:115MB
- 文件页数:40212188页
- 主题词:运筹学-英文
PDF下载
下载说明
运筹学导论 初级篇 英文版 第8版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
初级篇1
Chapter 1 What Is Operations Research?1
1.1 Operations Research Models1
1.2 Solving the OR Model4
1.3 Queuing and Simulation Models5
1.4 Art of Modeling5
1.5 More Than Just Mathematics7
1.6 Phases of an OR Study8
1.7 About This Book10
References10
Chapter 2 Modeling with Linear Programming11
2.1 Two-Variable LP Model12
2.2 Graphical LP Solution15
2.2.1 Solution of a Maximization Model16
2.2.2 Solution of a Minimization Model23
2.3 Selected LP Applications27
2.3.1 Urban Planning27
2.3.2 Currency Arbitrage32
2.3.3 Investment37
2.3.4 Production Planning and Inventory Control42
2.3.5 Blending and Refining51
2.3.6 Manpower Planning57
2.3.7 Additional Applications60
2.4 Computer Solution with Solver and AMPL68
2.4.1 LP Solution with Excel Solver69
2.4.2 LP Solution with AMPL73
References80
Chapter 3 The Simplex Method and Sensitivity Analysis81
3.1 LP Model in Equation Form82
3.1.1 Converting Inequalities into Equations with Nonnegative Right-Hand Side82
3.1.2 Dealing with Unrestricted Variables84
3.2 Transition from Graphical to Algebraic Solution85
3.3 The Simplex Method90
3.3.1 Iterative Nature of the Simplex Method90
3.3.2 Computational Details of the Simplex Algorithm93
3.3.3 Summary of the Simplex Method99
3.4 Artificial Starting Solution103
3.4.1 M-Method104
3.4.2 Two-Phase Method108
3.5 Special Cases in the Simplex Method113
3.5.1 Degeneracy113
3.5.2 Alternative Optima116
3.5.3 Unbounded Solution119
3.5.4 Infeasible Solution121
3.6 Sensitivity Analysis123
3.6.1 Graphical Sensitivity Analysis123
3.6.2 Algebraic Sensitivity Analysis--Changes in the Right-Hand Side129
3.6.3 Algebraic Sensitivity Analysis--Objective Function139
3.6.4 Sensitivity Analysis with TORA, Solver, and AMPL146
References150
Chapter 4 Duality and Post-Optimal Analysis151
4.1 Definition of the Dual Problem151
4.2 Primal-Dual Relationships156
4.2.1 Review of Simple Matrix Operations156
4.2.2 Simplex Tableau Layout158
4.2.3 Optimal Dual Solution159
4.2.4 Simplex Tableau Computations165
4.3 Economic Interpretation of Duality169
4.3.1 Economic Interpretation of Dual Variables170
4.3.2 Economic Interpretation of Dual Constraints172
4.4 Additional Simplex Algorithms174
4.4.1 Dual Simplex Algorithm174
4.4.2 Generalized Simplex Algorithm180
4.5 Post-Optimal Analysis181
4.5.1 Changes Affecting Feasibility182
4.5.2 Changes Affecting Optimality187
References191
Chapter 5 Transportation Model and Its Variants193
5.1 Definition of the Transportation Model194
5.2 Nontraditional Transportation Models201
5.3 The Transportation Algorithm206
5.3.1 Determination of the Starting Solution207
5.3.2 Iterative Computations of the Transportation Algorithm211
5.3.3 Simplex Method Explanation of the Method of Multipliers220
5.4 The Assignment Model221
5.4.1 The Hungarian Method222
5.4.2 Simplex Explanation of the Hungarian Method228
5.5 The Transshipment Model229
References234
Chapter 6 Network Models235
6.1 Scope and Definition of Network Models236
6.2 Minimal Spanning Tree Algorithm239
6.3 Shortest-Route Problem243
6.3.1 Examples of the Shortest-Route Applications243
6.3.2 Shortest-Route Algorithms248
6.3.3 Linear Programming Formulation of the Shortest-Route Problem257
6.4 Maximal flow model263
6.4.1 Enumeration of Cuts263
6.4.2 Maximal Flow Algorithm264
6.4.3 Linear Programming Formulation of Maximal Flow Mode273
6.5 CPM and PERT275
6.5.1 Network Representation277
6.5.2 Critical Path (CPM) Computations282
6.5.3 Construction of the Time Schedule285
6.5.4 Linear Programming Formulation of CPM292
6.5.5 PERT Networks293
References296
Chapter 7 Goal Programming297
7.1 A Goal Programming Formulation298
7.2 Goal Programming Algorithms302
7.2.1 The Weights Method302
7.2.2 The Preemptive Method305
References312
Chapter 8 Integer Linear Programming313
8.1 Illustrative Applications314
8.1.1 Capital Budgeting314
8.1.2 Set-Covering Problem318
8.1.3 Fixed-Charge Problem324
8.1.4 Either-Or and If-Then Constraints328
8.2 Integer Programming Algorithms333
8.2.1 Branch-and-Bound (B编号B) Algorithm334
8.2.2 Cutting-Plane Algorithm343
8.2.3 Computational Considerations in ILP348
8.3 Traveling Salesperson (TSP) Problem349
8.3.1 Heuristic Algorithms353
8.3.2 B&B Solution Algorithm356
8.3.3 Cutting-Plane Algorithm359
References361
Chapter 9 Deterministic Dynamic Programming363
9.1 Recursive Nature of Computations in DP364
9.2 Forward and Backward Recursion367
9.3 Selected DP Applications369
9.3.1 Knapsack/Fly-Away/Cargo-Loading Model369
9.3.2 Work-Force Size Model377
9.3.3 Equipment Replacement Model380
9.3.4 Investment Model384
9.3.5 Inventory Models387
9.4 Problem of Dimensionality388
References390
Chapter 10 Deterministic Inventory Models391
10.1 General Inventory Model391
10.2 Role of Demand in the Development of Inventory Models392
10.3 Static Economic-Order-Quantity (EOQ) Models394
10.3.1 Classic EOQ model394
10.3.2 EOQ with Price Breaks400
10.3.3 Multi-Item EOQ with Storage Limitation404
10.4 Dynamic EOQ Models407
10.4.1 No-Setup Model409
10.4.2 Setup Model413
References425
Chapter 11 Decision Analysis and Games427
11.1 Decision Making under Certainty--Analytic Hierarchy Process (AHP)428
11.2 Decision Making under Risk438
11.2.1 Decision Tree-Based Expected Value Criterion438
11.2.2 Variations of the Expected Value Criterion444
11.3 Decision under Uncertainty453
11.4 Game Theory458
11.4.1 Optimal Solution of Two-Person Zero-Sum Games459
11.4.2 Solution of Mixed Strategy Games462
References468
Chapter 12 Queuing Systems469
12.1 Why Study Queues?470
12.2 Elements of a Queuing Model471
12.3 Role of Exponential Distribution473
12.4 Pure Birth and Death Models (Relationship Between the Exponential and Poisson Distributions)476
12.4.1 Pure Birth Model476
12.4.2 Pure Death Model480
12.5 Generalized Poisson Queuing Model483
12.6 Specialized Poisson Queues488
12.6.1 Steady-State Measures of Performance489
12.6.2 Single-Server Models493
12.6.3 Multiple-Server Models502
12.6.4 Machine Servicing Model--(M/M/R): (GD/K/K), R<K512
12.7 (M/G/1): (GD/?/?)--Pollaczek-Khintchine(P-K) Formula515
12.8 Other Queuing Models517
12.9 Queuing Decision Models517
12.9.1 Cost Models518
12.9.2 Aspiration Level Model522
References524
Appendix A AMPL Modeling Language525
A.1 Rudimentary AMPL Model525
A.2 Components of AMPL Model526
A.3 Mathematical Expressions and Computed Parameters534
A.4 Subsets and Indexed Sets537
A.5 Accessing External Files539
A.5.1 Simple Read Files539
A.5.2 Using Print or Printf to Retrieve Output541
A.5.3 Input Table Files541
A.5.4 Output Table Files544
A.5.5 Spreadsheet Input/Output Tables546
A.6 Interactive Commands546
A.7 Iterative and Conditional Execution of AMPL Commands548
A.8 Sensitivity Analysis Using AMPL550
Reference550
高级篇551
Chapter 13 Advanced Linear Programming551
13.1 Simplex Method Fundamentals552
13.1.1 From Extreme Points to Basic Solutions554
13.1.2 Generalized Simplex Tableau in Matrix Form557
13.2 Revised Simplex Method560
13.2.1 Development of the Optimality and Feasibility Conditions561
13.2.2 Revised Simplex Algorithm563
13.3 Bounded-Variables Algorithm569
13.4 Duality575
13.4.1 Matrix Definition of the Dual Problem576
13.4.2 Optimal Dual Solution576
13.5 Parametric Linear Programming580
13.5.1 Parametric Changes in C581
13.5.2 Parametric Changes in b584
References586
Chapter 14 Review of Basic Probability587
14.1 Laws of Probability587
14.1.1 Addition Law of Probability588
14.1.2 Conditional Law of Probability589
14.2 Random Variables and Probability Distributions591
14.3 Expectation of a Random Variable593
14.3.1 Mean and Variance (Standard Deviation) of a Random Variable594
14.3.2 Mean and Variance of Joint Random Variables596
14.4 Four Common Probability Distributions599
14.4.1 Binomial Distribution599
14.4.2 Poisson Distribution600
14.4.3 Negative Exponential Distribution601
14.4.4 Normal Distribution602
14.5 Empirical Distributions605
References612
Chapter 15 Probabilistic Inventory Models613
15.1 Continuous Review Models614
15.1.1 "Probabilitized" EOQ Model614
15.1.2 Probabilistic EOQ Model616
15.2 Single-Period Models621
15.2.1 No-Setup Model (Newsvendor Model)621
15.2.2 Setup Model {s-S Policy)625
15.3 Multiperiod Model627
References630
Chapter 16 Simulation Modeling631
16.1 Monte Carlo Simulation631
16.2 Types of Simulation636
16.3 Elements of Discrete-Event Simulation637
16.3.1 Generic Definition of Events637
16.3.2 Sampling from Probability Distributions639
16.4 Generation of Random Numbers648
16.5 Mechanics of Discrete Simulation650
16.5.1 Manual Simulation of a Single-Server Model650
16.5.2 Spreadsheet-Based Simulation of the Single-Server Model656
16.6 Methods for Gathering Statistical Observations659
16.6.1 Subinterval Method660
16.6.2 Replication Method661
16.6.3 Regenerative (Cycle) Method662
16.7 Simulation Languages664
References666
Chapter 17 Markov Chains667
17.1 Definition of a Markov Chain667
17.2 Absolute and n-Step Transition Probabilities670
17.3 Classification of the States in a Markov Chain672
17.4 Steady-State Probabilities and Mean Return Times of Ergodic Chains675
17.5 First Passage Time680
17.6 Analysis of Absorbing States684
References689
Chapter 18 Classical Optimization Theory691
18.1 Unconstrained Problems691
18.1.1 Necessary and Sufficient Conditions692
18.1.2 The Newton-Raphson Method696
18.2 Constrained Problems698
18.2.1 Equality Constraints699
18.2.2 Inequality Constraints--Karush-Kuhn-Tucker (KKT) Conditions711
References716
Chapter 19 Nonlinear Programming Algorithms717
19.1 Unconstrained Algorithms717
19.1.1 Direct Search Method717
19.1.2 Gradient Method721
19.2 Constrained Algorithms725
19.2.1 Separable Programming725
19.2.2 Quadratic Programming734
19.2.3 Chance-Constrained Programming739
19.2.4 Linear Combinations Method744
19.2.5 SUMT Algorithm747
References748
Chapter 20 Additional Network and LP Algorithms749
20.1 Minimum-Cost Capacitated Flow Problem749
20.1.1 Network Representation750
20.1.2 Linear Programming Formulation752
20.1.3 Capacitated Network Simplex Algorithm757
20.2 Decomposition Algorithm764
20.3 Karmarkar Interior-Point Method773
20.3.1 Basic Idea of the Interior-Point Algorithm773
20.3.2 Interior-Point Algorithm775
References784
Chapter 21 Forecasting Models785
21.1 Moving Average Technique785
21.2 Exponential Smoothing789
21.3 Regression790
References794
Chapter 22 Probabilistic Dynamic Programming795
22.1 A Game of Chance795
22.2 Investment Problem798
22.3 Maximization of the Event of Achieving a Goal802
References805
Chapter 23 Markovian Decision Process807
23.1 Scope of the Markovian Decision Problem807
23.2 Finite-Stage Dynamic Programming Model809
23.3 Infinite-Stage Model813
23.3.1 Exhaustive Enumeration Method813
23.3.2 Policy Iteration Method Without Discounting816
23.3.3 Policy Iteration Method with Discounting819
23.4 Linear Programming Solution822
References826
Chapter 24 Case Analysis827
Case 1: Airline Fuel Allocation Using Optimum Tankering828
Case 2: Optimization of Heart Valves Production835
Case 3: Scheduling Appointments at Australian Tourist Commission Trade Events838
Case 4: Saving Federal Travel Dollars842
Case 5: Optimal Ship Routing and Personnel Assignment for Naval Recruitment in Thailand846
Case 6: Allocation of Operating Room Time in Mount Sinai Hospital852
Case 7: Optimizing Trailer Payloads at PFG Building Glass856
Case 8: Optimization of Crosscutting and Log Allocation at Weyerhaeuser862
Case 9: Layout Planning for a Computer Integrated Manufacturing(CIM) Facility867
Case 10: Booking Limits in Hotel Reservations874
Case 11: Casey's Problem: Interpreting and Evaluating a New Test877
Case 12: Ordering Golfers on the Final Day of Ryder Cup Matches880
Case 13: Inventory Decisions in Dell's Supply Chain882
Case 14: Analysis of an Internal Transport System in a Manufacturing Plant885
Case 15: Telephone Sales Manpower Planning at Qantas Airways888
Appendix B Statistical Tables895
Appendix C Partial Solutions to Answers Problems899
Appendix D Review of Vectors and Matrices949
D.1 Vectors949
D.1.1 Definition of a Vector949
D.1.2 Addition (Subtraction) of Vectors949
D.1.3 Multiplication of Vectors by Scalars950
D.1.4 Linearly Independent Vectors950
D.2 Matrices950
D.2.1 Definition of a Matrix950
D.2.2 Types of Matrices950
D.2.3 Matrix Arithmetic Operations951
D.2.4 Determinant of a Square Matrix952
D.2.5 Nonsingular Matrix954
D.2.6 Inverse of a Nonsingular Matrix954
D.2.7 Methods of Computing the Inverse of Matrix955
D.2.8 Matrix Manipulations Using Excel960
D.3 Quadratic Forms961
D.4 Convex and Concave Functions963
Problems963
Selected References964
Appendix E Case Studies965