图书介绍

水弹性理论及其在超大型浮式结构物上的应用PDF|Epub|txt|kindle电子书版本网盘下载

水弹性理论及其在超大型浮式结构物上的应用
  • 崔维成等著 著
  • 出版社: 上海交通大学出版社
  • ISBN:9787313046260
  • 出版时间:2007
  • 标注页数:476页
  • 文件大小:108MB
  • 文件页数:40212861页
  • 主题词:水弹性力学-应用-浮式建筑物-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

水弹性理论及其在超大型浮式结构物上的应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Introduction to Very Large Floating Structures1

1.1 Basic Concepts of VLFS1

1.2 History of the Research and Development of VLFS4

1.3 Potential Usage of VLFS7

1.4 Technical Problems Involved in the Development of VLFS9

1.4.1 Fundamental Concepts10

1.4.2 Realization of the System10

1.4.3 Functional Requirement for the System11

1.4.4 Design/Construction, Maintenance/ Inspection/ Repair,and Scrap12

1.5 Importance of the Hydroelastic Response in the Design of VLFS12

References13

Chapter 2 A Historical Review of the Theory of Hydroelasticity17

2.1 Basic Concepts17

2.2 Brief Overview of the Historical Development18

2.2.1 Analytical Approaches and Acoustic Problems18

2.2.2 Hydroelastic Analysis of Floating Marine Structures19

2.2.3 Linear Two-dimensional Hydroelastricity Theories20

2.2.4 Linear Three-dimensional Hydroelasticity Theories21

2.2.5 Nonlinear Hydroelasticity Theories23

References24

Chapter 3 Hydroelasticity Theory in Time Domain29

3.1 Potential Theory for an Arbitrary Floating Body30

3.1.1 The Potential Theory Formulated in an Equilibrium Coordinate System32

3.1.2 The Steady Wave Making Problem33

3.1.3 The Large Amplitude Motion Theory of a Floating Body34

3.1.4 The Linearization with Respect to the Steady Wave Making Potential35

3.1.5 Brief Introduction to the Boundary Element Method37

3.2 Solution Methods to the Linear Hydroelasticity in Time Domain41

3.2.1 Formulation of the Linear Hydroelasticity in Time Domain41

3.2.2 Decomposition of the Problem44

3.2.3 Expression of the Radiation Potential in Time Domain45

3.2.4 Equation of Motion in Time Domain47

3.2.5 Memorial Function Determined from the Hydrodynamic Results in Frequency Domain49

3.2.6 Boundary Element Method in Time Domain51

3.2.7 A Fast Algorithm for Calculating the Transient Free Surface Green Function55

3.3 Nonlinear Hydroelasticity Theory in Time Domain60

3.3.1 First Order Fluid Forces and Nonlinear Structural Dynamics61

3.3.2 Second Order Fluid Forces and Linear Structural Dynamics63

3.3.3 Fully Nonlinear Fluid Forces and Finite Structural Deformation73

References78

Chapter 4 Hydroelasticity Theory in Frequency Domain83

4.1 Introduction83

4.2 Potential Flow Analysis of a Floating Flexible Body83

4.2.1 Dynamic Displacement84

4.2.2 Velocity Potential and Boundary Conditions86

4.2.3 Pressure Distribution on the Body Surface89

4.2.4 Potential Flow Around a Floating Flexible Body90

4.2.5 Green Functions and the Modified Rankine Source Method95

4.3 Linear Structural Dynamics of Floating Bodies98

4.3.1 Static and Dynamic Displacement98

4.3.2 Element Stiffness Matrix and Mass Matrix99

4.3.3 Damping99

4.3.4 Nodal Forces and External Loads100

4.3.5 Transformation of the Coordinates100

4.3.6 Generalized Gravity Force101

4.3.7 Hamilton's Principle102

4.3.8 System of Equations of Motion102

4.3.9 Natural Frequencies and Principal Modes of a Dry Structure103

4.3.10 Orthogonality Conditions106

4.3.11 Principal Coordinates107

4.4 Hydroelastic Analysis110

4.4.1 Generalized Fluid Force110

4.4.2 Generalized Concentrated Force112

4.4.3 Decomposition of the Responses113

4.4.4 Added Mass and Damping Coefficients113

4.4.5 Restoring Coefficients114

4.4.6 Steady-state and Still Water Responses116

4.4.7 Equation of Unsteady Response117

4.5 Hydroelasiticity of Flexible Multi-body Structure118

4.5.1 Equations of Motion for a Body in the Multi-body Structure119

4.5.2 Velocity Potential of the Fluid Motion121

4.5.3 Radiation Potential122

4.5.4 Generalized Fluid Forces and Equations of Motion123

4.6 Nonlinear Hydroelasticity in Frequency Domain125

4.6.1 Problem Formulation126

4.6.2 Evaluation of Potentials-monochromatic Waves127

4.6.3 Evaluation of Potentials-bi-chromatic Waves135

4.7 Analysis Method for the Mooring System of a Flexible Floating Body139

4.7.1 Introduction139

4.7.2 The Motion Equations of a Moored Flexible Floating Body140

4.7.3 The Motion Equations of a Mooring Line142

4.7.4 Goodman-Lance Method147

4.7.5 Numerical Example149

References152

Chapter 5 Hydroelastic Response Analyses for Mat-Type VLFS156

5.1 General Hydroelasticity Problem for Mat-Type VLFS156

5.1.1 Introduction156

5.1.2 Formulation of the Hydroelasticity Problem157

5.1.3 Linearized Version161

5.1.4 Time Harmonic Expressions162

5.1.5 Transformation of 3D Problem into 2D Problem by Separation of Variable Technique163

5.1.6 Eigenvalues and Eigenfunctions166

5.2 Analytical Solutions for Plate Model169

5.2.1 Ohkusu Methods169

5.2.2 Tsubogo's BOEF Model173

5.2.3 The Accurate BOEF Model176

5.2.4 Discussion on Numerical Results179

5.3 Eigenfunction Expansion Method185

5.3.1 Kim-Ertekin Method186

5.3.2 An Alternative Function Expansion Method192

5.3.3 Shallow Water and Higher Approximations195

5.4 Green Function Method for Plate Model200

5.4.1 Integral Expression for Plate Deflection200

5.4.2 Accurate Green Function for a Free Plate203

5.4.3 Eatock Taylor-Ohkusu's Approximate Plate Green Function207

5.4.4 A New Approximate Plate Green Function211

5.5 Other Mixed Methods212

5.5.1 Hybrid Method212

5.5.2 Eigenfunction Expansion--BEM213

5.5.3 Finite Difference--BEM218

5.6 Time Domain Analysis222

5.6.1 Traditional Method222

5.6.2 Pressure Method223

5.6.3 Acceleration Potential and Hybrid Method224

5.7 Nonlinear Effects on Hydroelastic Responses of Plate230

References233

Chapter 6 Hydroelastic Response Analyses for MOB237

6.1 Introduction to Mobile Offshore Base237

6.1.1 MOB Frame Concepts237

6.1.2 Connector Development238

6.2 Connector Load Calculation Model241

6.2.1 RMFC (Rigid Module Flexible Connector) Model241

6.2.2 FMRC (Flexible Module Rigid Connector) Model249

6.2.3 FMFC (Flexible Module Flexible Connector) Model254

6.3 Model Test of a 3 Module MOB255

6.3.1 MOB Model256

6.3.2 Test of MOB Model258

6.3.3 Comparison of Experimental and Numerical Results259

6.4 Numerical Results and Analysis262

6.4.1 Numerical Results of RMFC Model262

6.4.2 Accuracy of RMFC Model274

References277

Chapter 7 Hydroelastic Responses of VLFS under Inhomogeneous Environments283

7.1 Introduction283

7.2 Inhomogeneous Oceanic Environments284

7.2.1 Inhomogeneous Oceanic Environments Due to the Varying Ocean Bottom284

7.2.2 Inhomogeneous Oceanic Environments Due to Atmosphere and Wind286

7.3 Mass-momentum Conservation Model of Inhomogeneous Oceanic Environments289

7.3.1 Formulation of the Basic Wave Theory289

7.3.2 Varying Depth290

7.3.3 Wave Current Interaction312

7.3.4 Waves in a Harbor316

7.3.5 Waves Through Breakwaters317

7.4 Energy Balance Model of Inhomogeneous Oceanic Environments318

7.4.1 The Third-generation Wave Model318

7.4.2 Storm Surge Model321

7.4.3 Description of the Inhomogeneity of Waves322

7.4.4 The Inhomogeneous Environment Caused by Typhoon near China Sea322

7.5 Effects of Boundaries on the Hydroelastic Responses324

7.5.1 Floating Body in an Irregular Bay324

7.5.2 Floating Thin Plate in a Rectangular Bay326

7.5.3 Structure Responses of a Plate Strip on Waves over 2D Varying Depth328

7.5.4 Hydroelastic Responses of a Mat-like VLFS to Waves over 3D Varying Depth334

References342

Chapter 8 Experimental Techniques for VLFS351

8.1 Introduction351

8.2 Progress of the Experimental Research on VLFS352

8.2.1 Model Experiment on Hydroelasticity of VLFS352

8.2.2 Model Experiment on Hydroelasticity of VLFS in Non-uniform Ocean Environment354

8.2.3 Mooring System Experiment of VLFS355

8.2.4 Experiment of Multi-module VLFS356

8.3 Experimental Method of VLFS358

8.3.1 Law of Similitude358

8.3.2 Design and Construction of VLFS Model362

8.3.3 Main Facilities Needed in VLFS Model Tests364

8.3.4 Analysis of Experimental Data and Errors365

8.4 Examples of VLFS Model Tests371

8.4.1 Hydroelastic Model Test on Box-typed VLFS371

8.4.2 Model Test on Hydroelastic Responses of VLFS in Non-uniform Ocean Environment373

8.4.3 Multi-module Test of Semi-submersible VLFS375

References379

Appendix A Introduction to Some Mathematical Background381

A.1 Gauss Formula381

A.2 Three Dimensional Green's Formula382

A.3 Stokes Formula and Its Variants383

A.4 Transport Equation384

A.5 Conservation Laws384

A.6 Constitutive Equation386

A.7 State Equation386

A.8 B-Splines and NURBS (Non-uniform Rational B-splines)387

A.8.1 B-spline Basis Function387

A.8.2 NURBS Basis Functions387

References389

Appendix B Introduction to Dynamics of Surface Gravity Waves391

B.1 Basic Formulation for an Incompressible Fluid of Constant Density391

B.1.1 Governing Equations391

B.1.2 Boundary Conditions for an Inviscid and Irrotational Flow392

B.2 Derivation and Classification of Approximate Equations394

B.2.1 Dimensional Analysis394

B.2.2 Airy's Theory for Very Long Waves: μ→0,?=O(1)397

B.2.3 Boussinesq Theory: O(?) =O(μ2)<1398

B.2.4 Variable Depth398

B.3 Linearized Approximation for Small Amplitude Waves399

B.3.1 Linear Theory of Water Waves399

B.3.2 The Mild Slope Equation for Slowly Varying Depth402

B.3.3 Harbor Oscillations Excited by Incident Long Waves403

B.4 A Numerical Method Based on Finite Elements for General Water Wave Problem406

B.4.1 The Variational Principle407

B.4.2 Finite Element Approximation408

References413

Appendix C Introduction to Structural Mechanics415

C.1 Structural Dynamics415

C.1.1 Strain and Stress for Large Displacement415

C.1.2 Principle of Virtual Work and Its Incremental Form421

C.1.3 Finite Element Models Derived from the Incremental Variational Principle428

C.1.4 Constitutive Relations for Large Deformation439

C.2 Plate Model446

C.2.1 Strains in a Plate447

C.2.2 The Stress of a Homogeneous and Isotropic Plate449

C.2.3 Hamilton's Principle449

C.2.4 The von Karman's Plate Equations for Large Deflection453

C.2.5 Linear Equations of Thin Plate for Small Deflection455

C.2.6 The Linear Equations of Mildly Thick Plate for Small Deflection456

C.3 Shell Model460

C.3.1 General Orthogonal Curvilinear Coordinate System460

C.3.2 The Orthogonal Curvilinear Coordinate System for Shell Analysis461

C.3.3 Displacements and Deformations in the Thin Shell464

C.3.4 A Nonlinear Thin Shell Theory467

References473

Appendix D Unit Normal Vector of Deformable Structures475

References476

热门推荐