图书介绍

普通高等教育“十三五”规划教材 工程数学 复变函数与数学物理方法 英文版PDF|Epub|txt|kindle电子书版本网盘下载

普通高等教育“十三五”规划教材 工程数学 复变函数与数学物理方法 英文版
  • 石霞,默会霞,钱江,杨建奎著 著
  • 出版社: 北京:北京邮电大学出版社
  • ISBN:9787563552641
  • 出版时间:2017
  • 标注页数:245页
  • 文件大小:32MB
  • 文件页数:268页
  • 主题词:工程数学-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

普通高等教育“十三五”规划教材 工程数学 复变函数与数学物理方法 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ Functions of a Complex Variable3

Chapter 1 Complex Numbers and Complex Functions3

1.1 Complex number and its operations3

1.1.1 Complex number and its expression3

1.1.2 The operations of complex numbers6

1.1.3 Regions in the complex plane13

Exercises 1.114

1.2 Functions of a complex variable15

1.2.1 Definition of function of a complex variable15

1.2.2 Complex mappings17

Exercises 1.220

1.3 Limit and continuity of a complex function21

1.3.1 Limit of a complex function21

1.3.2 Continuity of a complex function26

Exercises 1.327

Chapter 2 Analytic Functions29

2.1 Derivatives of complex functions29

2.1.1 Derivatives29

2.1.2 Some properties of derivatives31

2.1.3 A necessary condition on differentiability31

2.1.4 Sufficient conditions on differentiability34

Exercises 2.136

2.2 Analytic functions37

2.2.1 Analytic functions37

2.2.2 Harmonic functions39

Exercises 2.241

2.3 Elementary functions41

2.3.1 Exponential functions41

2.3.2 Logarithmic functions42

2.3.3 Complex exponents45

2.3.4 Trigonometric functions46

2.3.5 Hyperbolic functions48

2.3.6 Inverse trigonometric and hyperbolic functions49

Exercises 2.350

Chapter 3 Integral of Complex Function52

3.1 Derivatives and definite integrals of functionsw(t)52

3.1.1 Derivatives of functionsw(t)52

3.1.2 Definite integrals of functionsw(t)53

Exercises 3.156

3.2 Contour integral56

3.2.1 Contour56

3.2.2 Definition of contour integral58

3.2.3 Antiderivatives66

Exercises 3.273

3.3 Cauchy integral theorem75

3.3.1 Cauchy-Goursat theorem75

3.3.2 Simply and multiply connected domains76

Exercises 3.380

3.4 Cauchy integral formula and derivatives of analytic functions81

3.4.1 Cauchy integral formula81

3.4.2 Higher-order derivatives formula of analytic functions84

Exercises 3.487

Chapter 4 Complex Series89

4.1 Complex series and its convergence89

4.1.1 Complex sequences and its convergence89

4.1.2 Complex series and its convergence90

Exercises 4.193

4.2 Power series93

4.2.1 The definition of power series93

4.2.2 The convergence of power series95

4.2.3 The operations of power series97

Exercises 4.297

4.3 Taylor series98

4.3.1 Taylor's theorem98

4.3.2 Taylor expansions of analytic functions100

Exercises 4.3104

4.4 Laurent series105

4.4.1 Laurent's theorem105

4.4.2 Laurent series expansion of analytic functions109

Exercises 4.4111

Chapter 5 Residues and Its Application113

5.1 Three types of isolated singular points113

Exercises 5.1118

5.2 Residues and Cauchy's residue theorem118

Exercises 5.2123

5.3 Application of residues on definite integrals123

5.3.1 Improper integrals124

5.3.2 Improper integrals involving sines and cosines125

5.3.3 Integrals on[0,2π]involving sines and cosines128

Exercises 5.3130

Part Ⅱ Mathematical Methods for Physics135

Chapter 6 Equations of Mathematical Physics and Problems for Defining Solutions135

6.1 Basic concept and definition135

6.1.1 Basic concept136

6.1.2 Linear operator and linear composition138

6.1.3 Calculation rule of operator140

6.2 Three typical partial differential equations and problems for defining solutions141

6.2.1 Wave equations and physical derivations141

6.2.2 Heat(conduction)equations and physical derivations143

6.2.3 Laplace equations and physical derivations144

6.3 Well-posed problem145

6.3.1 Initial conditions146

6.3.2 Boundary conditions146

Chapter 7 Classification and Simplification for Linear Second Order PDEs148

7.1 Classification of linear second order partial differential equations with two variables148

Exercises 7.1149

7.2 Simplification to standard forms149

Exercises 7.2156

Chapter 8 Integral Method on Characteristics158

8.1 D'Alembert formula for one dimensional infinite string oscillation158

Exercises 8.1160

8.2 Small oscillations of semi-infinite string with rigidly fixed or free ends,method of prolongation160

Exercises 8.2162

8.3 Integral method on characteristics for other second order PDEs,some examples162

Exercises 8.3165

Chapter 9 The Method of Separation of Variables on Finite Region166

9.1 Separation of variables for(1+1)-dimensional homogeneous equations167

9.1.1 Separation of variables for wave equation on finite region167

9.1.2 Separation of variables for heat equation on finite region170

Exercises 9.1172

9.2 Separation of variables for 2-dimensional Laplace equations174

9.2.1 Laplace equation with rectangular boundary174

9.2.2 Laplace equation with circular boundary177

Exercises 9.2180

9.3 Nonhomogeneous equations and nonhomogeneous boundary conditions181

Exercises 9.3192

9.4 Sturm-Liouville eigenvalue problem192

Exercises 9.4198

Chapter 10 Special Functions199

10.1 Bessel function199

10.1.1 Introduction to the Bessel equation199

10.1.2 The solution of the Bessel equation201

10.1.3 The recurrence formula of the Bessel function204

10.1.4 The properties of the Bessel function207

10.1.5 Application of Bessel function210

Exercises 10.1213

10.2 Legendre polynomial214

10.2.1 Introduction of the Legendre equation214

10.2.2 The solution of the Legendre equation216

10.2.3 The properties of the Legendre polynomial and recurrence formula218

10.2.4 Application of Legendre polynomial221

Exercises 10.2223

Chapter 11 Integral Transformations224

11.1 Fourier integral transformation224

11.1.1 Definition of Fourier integral transformation225

11.1.2 The properties of Fourier integral transformation228

11.1.3 Convolution and its Fourier transformation230

1 1.1.4 Application of Fourier integral transformation231

Exercises 11.1235

11.2 Laplace integral transformation236

11.2.1 Definition of Laplace transformation236

11.2.2 Properties of Laplace transformation238

11.2.3 Convolution and its Laplace transformation241

11.2.4 Application of Laplace integral transformation242

Exercises 11.2244

References245

热门推荐