图书介绍
应用数学基础PDF|Epub|txt|kindle电子书版本网盘下载
- 李国莹等编著 著
- 出版社: 上海:复旦大学出版社
- ISBN:7309035615
- 出版时间:2003
- 标注页数:344页
- 文件大小:9MB
- 文件页数:363页
- 主题词:应用数学-电视大学-教材
PDF下载
下载说明
应用数学基础PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一编 一元函数微分学1
第1章 函数3
§1.1 函数的概念3
1.1.1 实数概述3
1.1.2 函数的概念6
1.1.3 函数的两个要素9
§1.2 函数的性质14
1.2.1 函数的奇偶性14
1.2.2 函数的单调性16
1.2.3 函数的周期性18
1.2.4 函数的有界性19
§1.3 初等函数20
1.3.1 六类基本初等函数20
1.3.2 复合函数24
1.3.3 初等函数25
1.4.1 常用的经济函数举例26
§1.4 常用的函数举例26
1.4.2 几何分析中常用的函数举例32
第2章 函数的极限与连续35
§2.1 极限的概念35
2.1.1 无穷小量与变量极限的概念35
2.1.2 x→∞时函数f(x)的极限37
2.1.3 x→x0时函数f(x)的极限39
2.1.4 数列的极限40
§2.2 极限的运算法则41
2.2.1 极限的四则运算法则41
2.2.2 计算有理分式极限的运算法则42
2.2.3 无穷小量的运算法则46
§2.3 两个重要极限47
2.3.1 第一个重要极限?47
2.3.2 第二个重要极限?48
2.3.3 应用举例50
2.3.4 利用等价无穷小代换计算“0/0”型未定式极限51
§2.4 函数的连续性52
2.4.1 函数f(x)在x0点极限存在的充要条件53
2.4.2 函数连续的概念55
2.4.3 初等函数的连续性56
2.4.4 闭区间上连续函数的性质56
第3章 导数与微分59
§3.1 导数的概念59
3.1.1 导数概念的引入59
3.1.2 导数的概念61
3.1.3 导数的几何意义64
§3.2 导数的基本公式与运算法则65
3.2.1 基本初等函数的导数公式65
3.2.2 导数的四则运算法则67
3.2.3 高阶导数68
§3.3 复合函数和隐函数求导70
3.3.1 复合求导法则70
3.3.2 常用的复合函数求导公式71
3.3.3 隐函数的导数73
§3.4 函数的微分74
3.4.1 微分的概念74
3.4.2 微分的计算76
3.4.3 微分的应用76
3.4.4 二元函数的全微分78
第4章 导数的应用81
§4.1 微分中值定理81
4.1.1 拉格朗日微分中值定理81
4.1.2 拉格朗日中值定理的推论82
§4.2 利用导数研究函数的性态83
4.2.1 利用一阶导数的正负判断函数在区间上的单调性83
4.2.2 利用一阶导数求函数的极值86
4.2.3 利用二阶导数的正负判断函数在区间上的凹凸性87
§4.3 计算极限的洛必达法则89
4.3.1 “0/0”型未定式极限的计算89
4.3.3 其他类型未定式极限的计算90
4.3.2 “∞/∞”型未定式极限的计算90
§4.4 导数在经济分析中的应用91
4.4.1 经济中的边际分析91
4.4.2 经济中的弹性分析93
4.4.3 经济中的收益率分析95
4.4.4 经济中的最值分析96
4.4.5 经济中的功能成本分析98
第二编 一元函数积分学99
第5章 不定积分101
§5.1 原函数的性质和存在定理101
5.1.1 原函数的概念101
5.1.2 原函数的性质102
5.1.3 原函数的存在定理104
§5.2 不定积分的概念和直接积分法104
5.2.1 不定积分的概念104
5.2.2 求不定积分和求导的关系106
5.2.3 基本初等函数的不定积分107
5.2.4 计算不定积分的常用公式108
5.2.5 不定积分的性质109
5.2.6 不定积分的直接积分法109
§5.3 不定积分的换元积分法111
5.3.1 第一换元积分法的依据111
5.3.2 第一换元法的一般公式111
5.3.3 第一换元法的适用范围111
5.3.4 第一换元法的常用类型112
5.3.5 第一换元积分法的详细步骤113
5.3.6 不定积分的第二换元法113
§5.4 不定积分的分部积分法115
5.4.1 不定积分的分部积分法的依据115
5.4.2 分部积分法的基本步骤116
5.4.3 分部积分法计算不定积分的常用类型117
5.4.4 推广的分部积分公式118
5.5.1 有理分式121
§5.5 有理分式的不定积分121
5.5.2 关于有理分式的两个定理122
5.5.3 计算真分式不定积分的步骤123
5.5.4 计算有理分式不定积分的一般步骤125
5.5.5 三角有理分式的不定积分126
§5.6 不定积分的应用127
5.6.1 不定积分在经济分析中的应用127
5.6.2 不定积分的物理应用129
5.6.3 求解常微分方程130
5.6.4 常微分方程应用实例132
§5.7 关于原函数存在定理136
5.7.1 有界平面图形的面积136
5.7.2 开区间I内连续函数的原函数存在定理138
5.7.3 区间[a,b]上逐段连续函数在连续区间内的原函数存在定理139
第6章 定积分141
§6.1 定积分的概念和性质141
6.1.1 定积分的概念141
6.1.2 定积分的性质143
6.1.3 定积分的几何意义145
§6.2 定积分的计算方法146
6.2.1 定积分的直接积分法146
6.2.2 定积分的换元法147
6.2.3 定积分的分部积分法149
§6.3 数值积分的应用151
6.3.1 数值积分的基本思路151
6.3.2 数值积分的梯形公式153
6.3.3 数值积分的抛物线(Simpson)公式154
6.3.4 数值积分公式的收敛性155
§6.4 定积分的应用156
6.4.1 定积分在经济中的应用156
6.4.2 微元法158
6.4.3 定积分在几何中的应用159
6.4.4 定积分在物理中的应用161
§6.5 变限定积分和无穷限广义积分163
6.5.1 变限定积分163
6.5.2 无穷限广义积分166
§6.6 关于定积分性质和定义等价性的证明169
6.6.1 定积分的性质169
6.6.2 定积分的估值不等式172
6.6.3 定积分的等价定义173
第三编 概率论177
第7章 随机事件与概率179
§7.1 随机事件179
7.1.1 随机事件179
7.1.2 事件的运算与事件的关系182
§7.2 事件的概率184
7.2.1 概率的定义和性质184
7.2.2 概率加法公式和减法公式186
7.2.3 概率的乘法公式187
7.2.4 事件的独立性188
§7.3 古典概型190
7.3.1 古典概型190
7.3.2 全概率公式194
7.3.3 贝叶斯(Bayes)公式195
第8章 随机变量及其数字特征197
§8.1 离散型随机变量197
8.1.1 随机变量197
8.1.2 离散型随机变量及其概率分布197
8.1.3 常用的离散型随机变量199
§8.2 连续型随机变量201
8.2.1 连续型随机变量的概念及其概率密度201
8.2.2 连续型随机变量的分布函数202
8.2.3 常用的连续型随机变量203
§8.3 随机变量的数字特征207
8.3.1 随机变量样本的均值和方差207
8.3.2 离散型随机变量的数学期望和方差209
8.3.3 连续型随机变量的数学期望和方差210
8.3.4 数学期望和方差的性质211
8.3.5 常见类型随机变量的数字特征212
8.4.1 随机变量参数的点估计213
§8.4 随机变量的参数估计213
8.4.2 随机变量参数的区间估计216
§8.5 随机变量的参数检验219
8.5.1 假设检验的一般步骤219
8.5.2 正态分布均值μ的检验222
8.5.3 正态分布方差的检验223
第四编 线性代数225
§9.1 矩阵概念及其代数运算227
9.1.1 矩阵概念的引入227
第9章 矩阵227
9.1.2 几种特殊矩阵228
9.1.3 矩阵的代数运算与转置230
9.1.4 矩阵的乘法运算与转置运算规律233
9.1.5 矩阵运算的应用举例233
§9.2 n阶矩阵的行列式234
9.2.1 n阶矩阵行列式的概念234
9.2.2 行列式的运算性质237
9.3.2 阶梯形矩阵的秩241
§9.3 矩阵的秩241
9.3.1 矩阵秩的概念241
9.3.3 矩阵的初等行变换242
§9.4 矩阵求逆243
9.4.1 逆矩阵的概念244
9.4.2 逆矩阵的求法245
9.4.3 矩阵求逆运算的性质247
第10章 线性方程组249
§10.1 线性方程组有解性的判别249
10.1.1 线性方程组的矩阵表示249
10.1.2 线性方程组的有解判别定理250
§10.2 线性方程组的解法251
10.2.1 对初等数学中所用消去法的回顾和分析251
10.2.2 线性方程组的解法253
10.2.3 线性方程组解的结构256
练习1.1261
练习题261
第1章 函数261
练习1.2262
练习1.3263
练习1.4264
习题1264
第2章 函数的极限与连续266
练习2.1266
练习2.2267
练习2.3268
练习2.4269
习题2270
第3章 导数与微分271
练习3.1271
练习3.2273
练习3.3273
练习3.4274
习题3275
第4章 导数的应用277
练习4.1277
练习4.2277
练习4.3278
练习4.4278
习题4279
第5章 不定积分281
练习5.1281
练习5.2282
练习5.3283
练习5.4284
练习5.5286
练习5.6287
习题5288
练习6.1289
第6章 定积分289
练习6.2290
练习6.3291
练习6.4292
练习6.5292
习题6293
第7章 随机事件与概率295
练习7.1295
练习7.2296
练习7.3297
习题7299
第8章 随机变量及其数字特征300
练习8.1300
练习8.2301
练习8.3302
练习8.5304
练习8.4304
习题8305
第9章 矩阵307
练习9.1307
练习9.2308
练习9.3309
练习9.4310
习题9311
练习10.1313
第10章 线性方程组313
练习10.2314
习题10316
练习题参考答案318
《应用数学基础》附表339
附表1 标准正态分布函数Φ(x)339
附表2 t-分布的双侧临界值表341
附表3 χ2-分布的上侧临界值表342
参考文献344