图书介绍
INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONSPDF|Epub|txt|kindle电子书版本网盘下载
- ERWIN KREYSZIG 著
- 出版社:
- ISBN:
- 出版时间:未知
- 标注页数:0页
- 文件大小:15MB
- 文件页数:701页
- 主题词:
PDF下载
下载说明
INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1.Metric Spaces1
1.1 Metric Space2
1.2 Further Examples of Metric Spaces9
1.3 Open Set, Closed Set, Neighborhood17
1.4 Convergence, Cauchy Sequence, Completeness25
1.5 Examples.Completeness Proofs32
1.6 Completion of Metric Spaces41
Chapter 2.Normed Spaces.Banach Spaces49
2.1 Vector Space50
2.2 Normed Space.Banach Space58
2.3 Further Properties of Normed Spaces67
2.4 Finite Dimensional Normed Spaces and Subspaces72
2.5 Compactness and Finite Dimension77
2.6 Linear Operators82
2.7 Bounded and Continuous Linear Operators91
2.8 Linear Functionals103
2.9 Linear Operators and Functionals on Finite Dimen-sional Spaces111
2.10 Normed Spaces of Operators.Dual Space117
Chapter 3.Inner Product Spaces.Hilbert Spaces127
3.1 Inner Product Space.Hilbert Space128
3.2 Further Properties of Inner Product Spaces136
3.3 Orthogonal Complements and Direct Sums142
3.4 Orthonormal Sets and Sequences151
3.5 Series Related to Orthonormal Sequences and Sets160
3.6 Total Orthonormal Sets and Sequences167
3.7 Legendre, Hermite and Laguerre Polynomials175
3.8 Representation of Functionals on Hilbert Spaces188
3.9 Hilbert-Adjoint Operator195
3.10 Self-Adjoint, Unitary and Normal Operators201
Chapter 4.Fundamental Theorems for Normed and Banach Spaces209
4.1 Zorn’s Lemma210
4.2 Hahn-Banach Theorem213
4.3 Hahn-Banach Theorem for Complex Vector Spaces and Normed Spaces218
4.4 Application to Bounded Linear Functionals on C[a, b]225
4.5 Adjoint Operator231
4.6 Reflexive Spaces239
4.7 Cotegory Theorem.Uniform Boundedness Theorem246
4.8 Strong and Weak Convergence256
4.9 Convergence of Sequences of Operators and Functionals263
4.10 Application to Summability of Sequences269
4.11 Numerical Integration and Weak Convergence276
4.12 Open Mapping Theorem285
4.13 Closed Linear Operators.Closed Graph Theorem291
Chapter 5.Further Applications: Banach Fixed Point Theorem299
5.1 Banach Fixed Point Theorem299
5.2 Application of Banach’s Theorem to Linear Equations307
5.3 Applications of Banach’s Theorem to Differential Equations314
5.4 Application of Banach’s Theorem to Integral Equations319
Chapter 6.Further Applications: Approximation Theory327
6.1 Approximation in Normed Spaces327
6.2 Uniqueness, Strict Convexity330
6.3 Uniform Approximation336
6.4 Chebyshev Polynomials345
6.5 Approximation in Hilbert Space352
6.6 Splines356
Chapter 7.Spectral Theory of Linear Operators in Normed Spaces363
7.1 Spectral Theory in Finite Dimensional Normed Spaces364
7.2 Basic Concepts370
7.3 Spectral Properties of Bounded Linear Operators374
7.4 Further Properties of Resolvent and Spectrum379
7.5 Use of Complex Analysis in Spectral Theory386
7.6 Banach Algebras394
7.7 Further Properties of Banach Algebras398
Chapter 8.Compact Linear Operators on Normed Spaces and Their Spectrum405
8.1 Compact Linear Operators on Normed Spaces405
8.2 Further Properties of Compact Linear Operators412
8.3 Spectral Properties of Compact Linear Operators on Normed Spaces419
8.4 Further Spectral Properties of Compact Linear Operators428
8.5 Operator Equations Involving Compact Linear Operators436
8.6 Further Theorems of Fredholm Type442
8.7 Fredholm Alternative451
Chapter9.Spectral Theory of Bounded Self-Adjoint Linear Operators459
9.1 Spectral Properties of Bounded Self-Adjoint Linear Operators460
9.2 Further Spectral Properties of Bounded Self-Adjoint Linear Operators465
9.3 Positive Operators469
9.4 Square Roots of a Positive Operator476
9.5 Projection Operators480
9.6 Further Properties of Projections486
9.7 Spectral Family492
9.8 Spectral Family of a Bounded Self-Adjoint Linear Operator497
9.9 Spectral Representation of Bounded Self-Adjoint Linear Operators505
9.10 Extension of the Spectral Theorem to Continuous Functions512
9.11 Properties of the Spectral Family of a Bounded Self-Adjoint Linear Operator516
Chapter 10.Unbounded Linear Operators in Hilbert Space523
10.1 Unbounded Linear Operators and their Hilbert-Adjoint Operators524
10.2 Hilbert-Adjoint Operators, Symmetric and Self-Adjoint Linear Operators530
10.3 Closed Linear Operators and Closures535
10.4 Spectral Properties of Self-Adjoint Linear Operators541
10.5 Spectral Representation of Unitary Operators546
10.6 Spectral Representation of Self-Adjoint Linear Operators556
10.7 Multiplication Operator and Differentiation Operator562
Chapter 11.Unbounded Linear Operators inffQuantum Mechanics571
11.1 Basic Ideas.States, Observables, Position Operator572
11.2 Momentum Operator.Heisenberg Uncertainty Principle576
11.3 Time-lndependent Schrodinger Equation583
11.4 Hamilton Operator590
11.5 Time-Dependent Schrodinger Equation598
Appendix 1.Some Material for Review and Reference609
A1.1 Sets609
A1.2 Mappings613
A1.3 Families617
A1.4 Equivalence Relations618
A1.5 Compactness618
A1.6 Supremum and Infimum619
A1.7 Cauchy Convergence Criterion620
A1.8 Groups622
Appendix 2.Answers to Odd-Numbered Problems623
Appendix 3.References675
Index681