图书介绍

INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONSPDF|Epub|txt|kindle电子书版本网盘下载

INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONS
  • ERWIN KREYSZIG 著
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:15MB
  • 文件页数:701页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

INTRODUCTORY FUNCTIONAL ANALYSIS WITH APPLICATIONSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1.Metric Spaces1

1.1 Metric Space2

1.2 Further Examples of Metric Spaces9

1.3 Open Set, Closed Set, Neighborhood17

1.4 Convergence, Cauchy Sequence, Completeness25

1.5 Examples.Completeness Proofs32

1.6 Completion of Metric Spaces41

Chapter 2.Normed Spaces.Banach Spaces49

2.1 Vector Space50

2.2 Normed Space.Banach Space58

2.3 Further Properties of Normed Spaces67

2.4 Finite Dimensional Normed Spaces and Subspaces72

2.5 Compactness and Finite Dimension77

2.6 Linear Operators82

2.7 Bounded and Continuous Linear Operators91

2.8 Linear Functionals103

2.9 Linear Operators and Functionals on Finite Dimen-sional Spaces111

2.10 Normed Spaces of Operators.Dual Space117

Chapter 3.Inner Product Spaces.Hilbert Spaces127

3.1 Inner Product Space.Hilbert Space128

3.2 Further Properties of Inner Product Spaces136

3.3 Orthogonal Complements and Direct Sums142

3.4 Orthonormal Sets and Sequences151

3.5 Series Related to Orthonormal Sequences and Sets160

3.6 Total Orthonormal Sets and Sequences167

3.7 Legendre, Hermite and Laguerre Polynomials175

3.8 Representation of Functionals on Hilbert Spaces188

3.9 Hilbert-Adjoint Operator195

3.10 Self-Adjoint, Unitary and Normal Operators201

Chapter 4.Fundamental Theorems for Normed and Banach Spaces209

4.1 Zorn’s Lemma210

4.2 Hahn-Banach Theorem213

4.3 Hahn-Banach Theorem for Complex Vector Spaces and Normed Spaces218

4.4 Application to Bounded Linear Functionals on C[a, b]225

4.5 Adjoint Operator231

4.6 Reflexive Spaces239

4.7 Cotegory Theorem.Uniform Boundedness Theorem246

4.8 Strong and Weak Convergence256

4.9 Convergence of Sequences of Operators and Functionals263

4.10 Application to Summability of Sequences269

4.11 Numerical Integration and Weak Convergence276

4.12 Open Mapping Theorem285

4.13 Closed Linear Operators.Closed Graph Theorem291

Chapter 5.Further Applications: Banach Fixed Point Theorem299

5.1 Banach Fixed Point Theorem299

5.2 Application of Banach’s Theorem to Linear Equations307

5.3 Applications of Banach’s Theorem to Differential Equations314

5.4 Application of Banach’s Theorem to Integral Equations319

Chapter 6.Further Applications: Approximation Theory327

6.1 Approximation in Normed Spaces327

6.2 Uniqueness, Strict Convexity330

6.3 Uniform Approximation336

6.4 Chebyshev Polynomials345

6.5 Approximation in Hilbert Space352

6.6 Splines356

Chapter 7.Spectral Theory of Linear Operators in Normed Spaces363

7.1 Spectral Theory in Finite Dimensional Normed Spaces364

7.2 Basic Concepts370

7.3 Spectral Properties of Bounded Linear Operators374

7.4 Further Properties of Resolvent and Spectrum379

7.5 Use of Complex Analysis in Spectral Theory386

7.6 Banach Algebras394

7.7 Further Properties of Banach Algebras398

Chapter 8.Compact Linear Operators on Normed Spaces and Their Spectrum405

8.1 Compact Linear Operators on Normed Spaces405

8.2 Further Properties of Compact Linear Operators412

8.3 Spectral Properties of Compact Linear Operators on Normed Spaces419

8.4 Further Spectral Properties of Compact Linear Operators428

8.5 Operator Equations Involving Compact Linear Operators436

8.6 Further Theorems of Fredholm Type442

8.7 Fredholm Alternative451

Chapter9.Spectral Theory of Bounded Self-Adjoint Linear Operators459

9.1 Spectral Properties of Bounded Self-Adjoint Linear Operators460

9.2 Further Spectral Properties of Bounded Self-Adjoint Linear Operators465

9.3 Positive Operators469

9.4 Square Roots of a Positive Operator476

9.5 Projection Operators480

9.6 Further Properties of Projections486

9.7 Spectral Family492

9.8 Spectral Family of a Bounded Self-Adjoint Linear Operator497

9.9 Spectral Representation of Bounded Self-Adjoint Linear Operators505

9.10 Extension of the Spectral Theorem to Continuous Functions512

9.11 Properties of the Spectral Family of a Bounded Self-Adjoint Linear Operator516

Chapter 10.Unbounded Linear Operators in Hilbert Space523

10.1 Unbounded Linear Operators and their Hilbert-Adjoint Operators524

10.2 Hilbert-Adjoint Operators, Symmetric and Self-Adjoint Linear Operators530

10.3 Closed Linear Operators and Closures535

10.4 Spectral Properties of Self-Adjoint Linear Operators541

10.5 Spectral Representation of Unitary Operators546

10.6 Spectral Representation of Self-Adjoint Linear Operators556

10.7 Multiplication Operator and Differentiation Operator562

Chapter 11.Unbounded Linear Operators inffQuantum Mechanics571

11.1 Basic Ideas.States, Observables, Position Operator572

11.2 Momentum Operator.Heisenberg Uncertainty Principle576

11.3 Time-lndependent Schrodinger Equation583

11.4 Hamilton Operator590

11.5 Time-Dependent Schrodinger Equation598

Appendix 1.Some Material for Review and Reference609

A1.1 Sets609

A1.2 Mappings613

A1.3 Families617

A1.4 Equivalence Relations618

A1.5 Compactness618

A1.6 Supremum and Infimum619

A1.7 Cauchy Convergence Criterion620

A1.8 Groups622

Appendix 2.Answers to Odd-Numbered Problems623

Appendix 3.References675

Index681

热门推荐