图书介绍
分子模拟入门 第2版 英文版 影印本PDF|Epub|txt|kindle电子书版本网盘下载
![分子模拟入门 第2版 英文版 影印本](https://www.shukui.net/cover/31/30250906.jpg)
- (荷)弗兰科尔著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7510023998
- 出版时间:2010
- 标注页数:638页
- 文件大小:113MB
- 文件页数:659页
- 主题词:计算机模拟-应用-分子物理学-英文
PDF下载
下载说明
分子模拟入门 第2版 英文版 影印本PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
Part Ⅰ Basics7
2 Statistical Mechanics9
2.1 Entropy and Temperature9
2.2 Classical Statistical Mechanics13
2.2.1 Ergodicity15
2.3 Questions and Exercises17
3 Monte Carlo Simulations23
3.1 The Monte Carlo Method23
3.1.1 Importance Sampling24
3.1.2 The Metropolis Method27
3.2 A Basic Monte Carlo Algorithm31
3.2.1 The Algorithm31
3.2.2 Technical Details32
3.2.3 Detailed Balance versus Balance42
3.3 Trial Moves43
3.3.1 Translational Moves43
3.3.2 Orientational Moves48
3.4 Applications51
3.5 Questions and Exercises58
4 Molecular Dynamics Simulations63
4.1 Molecular Dynamics:The Idea63
4.2 Molecular Dynamics:A Program64
4.2.1 Initialization65
4.2.2 The Force Calculation67
4.2.3 Integrating the Equations of Motion69
4.3 Equations of Motion71
4.3.1 Other Algorithms74
4.3.2 Higher-Order Schemes77
4.3.3 Liouville Formulation of Time-Reversible Algorithms77
4.3.4 Lyapunov Instability81
4.3.5 One More Way to Look at the Verlet Algorithm82
4.4 Computer Experiments84
4.4.1 Diffusion87
4.4.2 Order-n Algorithm to Measure Correlations90
4.5 Some Applications97
4.6 Questions and Exercises105
Part Ⅱ Ensembles109
5 Monte Carlo Simulations in Various Ensembles111
5.1 General Approach112
5.2 Canonical Ensemble112
5.2.1 Monte Carlo Simulations113
5.2.2 Justification of the Algorithm114
5.3 Microcanonical Monte Carlo114
5.4 Isobaric-Isothermal Ensemble115
5.4.1 Statistical Mechanical Basis116
5.4.2 Monte Carlo Simulations119
5.4.3 Applications122
5.5 Isotension-Isothermal Ensemble125
5.6 Grand-Canonical Ensemble126
5.6.1 Statistical Mechanical Basis127
5.6.2 Monte Carlo Simulations130
5.6.3 Justification of the Algorithm130
5.6.4 Applications133
5.7 Questions and Exercises135
6 Molecular Dynamics in Various Ensembles139
6.1 Molecular Dynamics at Constant Temperature140
6.1.1 The Andersen Thermostat141
6.1.2 Nosé-Hoover Thermostat147
6.1.3 Nosé-Hoover Chains155
6.2 Molecular Dynamics at Constant Pressure158
6.3 Questions and Exercises160
Part Ⅲ Free Energies and Phase Equilibria165
7 Free Energy Calculations167
7.1 Thermodynamic Integration168
7.2 Chemical Potentials172
7.2.1 The Particle Insertion Method173
7.2.2 Other Ensembles176
7.2.3 Overlapping Distribution Method179
7.3 Other Free Energy Methods183
7.3.1 Multiple Histograms183
7.3.2 Acceptance Ratio Method189
7.4 Umbrella Sampling192
7.4.1 Nonequilibrium Free Energy Methods196
7.5 Questions and Exercises199
8 The Gibbs Ensemble201
8.1 The Gibbs Ensemble Technique203
8.2 The Partition Function204
8.3 Monte Carlo Simulations205
8.3.1 Particle Displacement205
8.3.2 Volume Change206
8.3.3 Particle Exchange208
8.3.4 Implementation208
8.3.5 Analyzing the Results214
8.4 Applications220
8.5 Questions and Exercises223
9 Other Methods to Study Coexistence225
9.1 Semigrand Ensemble225
9.2 Tracing Coexistence Curves233
10 Free Energies of Solids241
10.1 Thermodynamic Integration242
10.2 Free Energies of Solids243
10.2.1 Atomic Solids with Continuous Potentials244
10.3 Free Energies of Molecular Solids245
10.3.1 Atomic Solids with Discontinuous Potentials248
10.3.2 General Implementation Issues249
10.4 Vacancies and Interstitials263
10.4.1 Free Energies263
10.4.2 Numerical Calculations266
11 Free Energy of Chain Molecules269
11.1 Chemical Potential as Reversible Work269
11.2 Rosenbluth Sampling271
11.2.1 Macromolecules with Discrete Conformations271
11.2.2 Extension to Continuously Deformable Molecules276
11.2.3 Overlapping Distribution Rosenbluth Method282
11.2.4 Recursive Sampling283
11.2.5 Pruned-Enriched Rosenbluth Method285
Part Ⅳ Advanced Techniques289
12 Long-Range Interactions291
12.1 Ewald Sums292
12.1.1 Point Charges292
12.1.2 Dipolar Particles300
12.1.3 Dielectric Constant301
12.1.4 Boundary Conditions303
12.1.5 Accuracy and Computational Complexity304
12.2 Fast Multipole Method306
12.3 Particle Mesh Approaches310
12.4 Ewald Summation in a Slab Geometry316
13 Biased Monte Carlo Schemes321
13.1 Biased Sampling Techniques322
13.1.1 Beyond Metropolis323
13.1.2 Orientational Bias323
13.2 Chain Molecules331
13.2.1 Configurational-Bias Monte Carlo331
13.2.2 Lattice Models332
13.2.3 Off-lattice Case336
13.3 Generation of Trial Orientations341
13.3.1 Strong Intramolecular Interactions342
13.3.2 Generation of Branched Molecules350
13.4 Fixed Endpoints353
13.4.1 Lattice Models353
13.4.2 Fully Flexible Chain355
13.4.3 Strong Intramolecular Interactions357
13.4.4 Rebridging Monte Carlo357
13.5 Beyond Polymers360
13.6 Other Ensembles365
13.6.1 Grand-Canonical Ensemble365
13.6.2 Gibbs Ensemble Simulations370
13.7 Recoil Growth374
13.7.1 Algorithm376
13.7.2 Justification of the Method379
13.8 Questions and Exercises383
14 Accelerating Monte Carlo Sampling389
14.1 Parallel Tempering389
14.2 Hybrid Monte Carlo397
14.3 Cluster Moves399
14.3.1 Clusters399
14.3.2 Early Rejection Scheme405
15 Tackling Time-Scale Problems409
15.1 Constraints410
15.1.1 Constrained and Unconstrained Averages415
15.2 On-the-Fly Optimization:Car-Parrinello Approach421
15.3 Multiple Time Steps424
16 Rare Events431
16.1 Theoretical Background432
16.2 Bennett-Chandler Approach436
16.2.1 Computational Aspects438
16.3 Diffusive Barrier Crossing443
16.4 Transition Path Ensemble450
16.4.1 Path Ensemble451
16.4.2 Monte Carlo Simulations454
16.5 Searching for the Saddle Point462
17 Dissipative Particle Dynamics465
17.1 Description of the Technique466
17.1.1 Justification of the Method467
17.1.2 Implementation of the Method469
17.1.3 DPD and Energy Conservation473
17.2 Other Coarse-Grained Techniques476
Part Ⅴ Appendices479
A Lagrangian and Hamiltonian481
A.1 Lagrangian483
A.2 Hamiltonian486
A.3 Hamilton Dynamics and Statistical Mechanics488
A.3.1 Canonical Transformation489
A.3.2 Symplectic Condition490
A.3.3 Statistical Mechanics492
B Non-Hamiltonian Dynamics495
B.1 Theoretical Background495
B.2 Non-Hamiltonian Simulation of the N,V,T Ensemble497
B.2.1 The Nosé-Hoover Algorithm498
B.2.2 Nosé-Hoover Chains502
B.3 The N,P,T Ensemble505
C Linear Response Theory509
C.1 Static Response509
C.2 Dynamic Response511
C.3 Dissipation513
C.3.1 Electrical Conductivity516
C.3.2 Viscosity518
C.4 Elastic Constants519
D Statistical Errors525
D.1 Static Properties:System Size525
D.2 Correlation Functions527
D.3 Block Averages529
E Integration Schemes533
E.1 Higher-Order Schemes533
E.2 Nosé-Hoover Algorithms535
E.2.1 Canonical Ensemble536
E.2.2 The Isothermal-Isobaric Ensemble540
F Saving CPU Time545
F.1 Verlet List545
F.2 Cell Lists550
F.3 Combining the Verlet and Cell Lists550
F.4 Efficiency552
G Reference States559
G.1 Grand-Canonical Ensemble Simulation559
H Statistical Mechanics of the Gibbs“Ensemble”563
H.1 Free Energy of the Gibbs Ensemble563
H.1.1 Basic Definitions563
H.1.2 Free Energy Density565
H.2 Chemical Potential in the Gibbs Ensemble570
I Overlapping Distribution for Polymers573
J Some General Purpose Algorithms577
K Small Research Projects581
K.1 Adsorption in Porous Media581
K.2 Transport Properties in Liquids582
K.3 Diffusion in a Porous Media583
K.4 Multiple-Time-Step Integrators584
K.5 Thermodynamic Integration585
L Hints for Programming587
Bibliography589
Author Index619
Index628