图书介绍

MATERILS CHARACTERIZATION INTRODUCTION TO MICOSCOPIC AND SPECTROSCOPIC METHODS SECOND EDITIONPDF|Epub|txt|kindle电子书版本网盘下载

MATERILS CHARACTERIZATION INTRODUCTION TO MICOSCOPIC AND SPECTROSCOPIC METHODS SECOND EDITION
  • YANG LENG 著
  • 出版社: WILEY-VCH
  • ISBN:3527334637
  • 出版时间:2013
  • 标注页数:376页
  • 文件大小:115MB
  • 文件页数:388页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

MATERILS CHARACTERIZATION INTRODUCTION TO MICOSCOPIC AND SPECTROSCOPIC METHODS SECOND EDITIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Light Microscopy1

1.1 Optical Principles1

1.1.1 Image Formation1

1.1.2 Resolution3

1.1.2.1 Effective Magnitication5

1.1.2.2 Brightness and Contrast5

1.1.3 Depth of Field6

1.1.4 Aberrations7

1.2 Instrumentation9

1.2.1 Illumination System9

1.2.2 Objective Lens and Eyepiece13

1.2.2.1 Steps for Optimum Resolution15

1.2.2.2 Steps to Improve Depth of Field15

1.3 Specimen Preparation15

1.3.1 Sectioning16

1.3.1.1 Cutting16

1.3.1.2 Microtomy17

1.3.2 Mounting17

1.3.3 Grinding and Polishing19

1.3.3.1 Grinding19

1.3.3.2 Polishing21

1.3.4 Etching23

1.4 Imaging Modes26

1.4.1 Bright-Field and Dark-Field Imaging26

1.4.2 Phase-Contrast Microscopy27

1.4.3 Polarized-Light Microscopy30

1.4.4 Nomarski Microscopy35

1.4.5 Fluorescence Microscopy37

1.5 Confocal Microscopy39

1.5.1 Working Principles39

1.5.2 Three-Dimensional Images41

References45

Further Reading45

2 X-Ray Diffraction Methods47

2.1 X-Ray Radiation47

2.1.1 Generation of X-Rays47

2.1.2 X-Ray Absorption50

2.2 Theoretical Background of Diffraction52

2.2.1 Diffraction Geometry52

2.2.1.1 Bragg’s Law52

2.2.1.2 Reciprocal Lattice53

2.2.1.3 Ewald Sphere55

2.2.2 Diffraction Intensity58

2.2.2.1 Structure Extinction60

2.3 X-Ray Diffractometry62

2.3.1 Instrumentation62

2.3.1.1 System Aberrations64

2.3.2 Samples and Data Acquisition65

2.3.2.1 Sample Preparation65

2.3.2.2 Acquisition and Treatment of Diffraction Data65

2.3.3 Distortions of Diffraction Spectra67

2.3.3.1 Preferential Orientation67

2.3.3.2 Crystallite Size68

2.3.3.3 Residual Stress69

2.3.4 Applications70

2.3.4.1 Crystal-Phase Identification70

2.3.4.2 Quantitative Measurement72

2.4 Wide-Angle X-Ray Diffraction and Scattering75

2.4.1 Wide-Angle Diffraction76

2.4.2 Wide-Angle Scattering79

References82

Further Reading82

3 Transmission Electron Microscopy83

3.1 Instrumentation83

3.1.1 Electron Sources84

3.1.1.1 Thermionic Emission Gun85

3.1.1.2 Field Emission Gun86

3.1.2 Electromagnetic Lenses87

3.1.3 Specimen Stage89

3.2 Specimen Preparation90

3.2.1 Prethinning91

3.2.2 Final Thinning91

3.2.2.1 Electrolytic Thinning91

3.2.2.2 Ion Milling92

3.2.2.3 Ultramicrotomy93

3.3 Image Modes94

3.3.1 Mass—Density Contrast95

3.3.2 Diffraction Contrast96

3.3.3 Phase Contrast101

3.3.3.1 Theoretical Aspects102

3.3.3.2 Two-Beam and Multiple-Beam Imaging105

3.4 Selected-Area Diffraction (SAD)107

3.4.1 Selected-Area Diffraction Characteristics107

3.4.2 Single-Crystal Diffraction109

3.4.2.1 Indexing a Cubic Crystal Pattern109

3.4.2.2 Identification of Crystal Phases112

3.4.3 Multicrystal Diffraction114

3.4.4 Kikuchi Lines114

3.5 Images of Crystal Defects117

3.5.1 Wedge Fringe117

3.5.2 Bending Contours120

3.5.3 Dislocations122

References126

Further Reading126

4 Scanning Electron Microscopy127

4.1 Instrumentation127

4.1.1 Optical Arrangement127

4.1.2 Signal Detection129

4.1.2.1 Detector130

4.1.3 Probe Size and Current131

4.2 Contrast Formation135

4.2.1 Electron—Specimen Interactions135

4.2.2 Topographic Contrast137

4.2.3 Compositional Contrast139

4.3 Operational Variables141

4.3.1 Working Distance and Aperture Size141

4.3.2 Acceleration Voltage and Probe Current144

4.3.3 Astigmatism145

4.4 Specimen Preparation145

4.4.1 Preparation for Topographic Examination146

4.4.1.1 Charging and Its Prevention147

4.4.2 Preparation for Microcomposition Examination149

4.4.3 Dehydration149

4.5 Electron Backscatter Diffraction151

4.5.1 EBSD Pattern Formation151

4.5.2 EBSD Indexing and Its Automation153

4.5.3 Applications of EBSD155

4.6 Environmental SEM156

4.6.1 ESEM Working Principle156

4.6.2 Applications158

References160

Further Reading160

5 Scanning Probe Microscopy163

5.1 Instrumentation163

5.1.1 Probe and Scanner165

5.1.2 Control and Vibration Isolation165

5.2 Scanning Tunneling Microscopy166

5.2.1 Tunneling Current166

5.2.2 Probe Tips and Working Environments167

5.2.3 Operational Modes168

5.2.4 Typical Applications169

5.3 Atomic Force Microscopy170

5.3.1 Near-Field Forces170

5.3.1.1 Short-Range Forces171

5.3.1.2 van der Waals Forces171

5.3.1.3 Electrostatic Forces171

5.3.1.4 Capillary Forces172

5.3.2 Force Sensors172

5.3.3 Operational Modes174

5.3.3.1 Static Contact Modes176

5.3.3.2 Lateral Force Microscopy177

5.3.3.3 Dynamic Operational Modes177

5.3.4 Typical Applications180

5.3.4.1 Static Mode180

5.3.4.2 Dynamic Noncontact Mode181

5.3.4.3 Tapping Mode182

5.3.4.4 Force Modulation183

5.4 Image Artifacts183

5.4.1 Tip183

5.4.2 Scanner185

5.4.3 Vibration and Operation187

References189

Further Reading189

6 X-Ray Spectroscopy for Elemental Analysis191

6.1 Features of Characteristic X-Rays191

6.1.1 Types of Characteristic X-Rays193

6.1.1.1 Selection Rules193

6.1.2 Comparison of K,L,and M Series194

6.2 X-Ray Fluorescence Spectrometry196

6.2.1 Wavelength Dispersive Spectroscopy199

6.2.1.1 Analyzing Crystal200

6.2.1.2 Wavelength Dispersive Spectra201

6.2.2 Energy Dispersive Spectroscopy203

6.2.2.1 Detector203

6.2.2.2 Energy Dispersive Spectra204

6.2.2.3 Advances in Energy Dispersive Spectroscopy204

6.2.3 XRF Working Atmosphere and Sample Preparation206

6.3 Energy Dispersive Spectroscopy in Electron Microscopes207

6.3.1 Special Features208

6.3.2 Scanning Modes210

6.4 Qualitative and Quantitative Analysis211

6.4.1 Qualitative Analysis211

6.4.2 Quantitative Analysis213

6.4.2.1 Quantitative Analysis by X-Ray Fluorescence214

6.4.2.2 Fundamental Parameter Method215

6.4.2.3 Quantitative Analysis in Electron Microscopy216

References219

Further Reading219

7 Electron Spectroscopy for Surface Analysis221

7.1 Basic Principles221

7.1.1 X-Ray Photoelectron Spectroscopy221

7.1.2 Auger Electron Spectroscopy222

7.2 Instrumentation225

7.2.1 Ultrahigh Vacuum System225

7.2.2 Source Guns227

7.2.2.1 X-Ray Gun227

7.2.2.2 Electron Gun228

7.2.2.3 Ion Gun229

7.2.3 Electron Energy Analyzers229

7.3 Characteristics of Electron Spectra230

7.3.1 Photoelectron Spectra230

7.3.2 Auger Electron Spectra233

7.4 Qualitative and Quantitative Analysis235

7.4.1 Qualitative Analysis235

7.4.1.1 Peak Identification239

7.4.1.2 Chemical Shifts239

7.4.1.3 Problems with Insulating Materials241

7.4.2 Quantitative Analysis246

7.4.2.1 Peaks and Sensitivity Factors246

7.4.3 Composition Depth Profiling247

References250

Further Reading251

8 Secondary Ion Mass Spectrometry for Surface Analysis253

8.1 Basic Principles253

8.1.1 Secondary Ion Generation254

8.1.2 Dynamic and Static SIMS257

8.2 Instrumentation258

8.2.1 Primary Ion System258

8.2.1.1 Ion Sources259

8.2.1.2 Wien Filter262

8.2.2 Mass Analysis System262

8.2.2.1 Magnetic Sector Analyzer263

8.2.2.2 Quadrupole Mass Analyzer264

8.2.2.3 Time-of-Flight Analyzer264

8.3 Surface Structure Analysis266

8.3.1 Experimental Aspects266

8.3.1.1 Primary Ions266

8.3.1.2 Flood Gun266

8.3.1.3 Sample Handling267

8.3.2 Spectrum Interpretation268

8.3.2.1 Element Identification269

8.4 SIMS Imaging272

8.4.1 Generation of SIMS Images274

8.4.2 Image Quality275

8.5 SIMS Depth Profiling275

8.5.1 Generation of Depth Profiles276

8.5.2 Optimization of Depth Profiling276

8.5.2.1 Primary Beam Energy278

8.5.2.2 Incident Angle of Primary Beam278

8.5.2.3 Analysis Area279

References282

9 Vibrational Spectroscopy for Molecular Analysis283

9.1 Theoretical Background283

9.1.1 Electromagnetic Radiation283

9.1.2 Origin of Molecular Vibrations285

9.1.3 Principles of Vibrational Spectroscopy286

9.1.3.1 Infrared Absorption286

9.1.3.2 Raman Scattering287

9.1.4 Normal Mode of Molecular Vibrations289

9.1.4.1 Number of Normal Vibration Modes291

9.1.4.2 Classification of Normal Vibration Modes291

9.1.5 Infrared and Raman Activity292

9.1.5.1 Infrared Activity293

9.1.5.2 Raman Activity295

9.2 Fourier Transform Infrared Spectroscopy297

9.2.1 Working Principles298

9.2.2 Instrumentation300

9.2.2.1 Infrared Light Source300

9.2.2.2 Beamsplitter300

9.2.2.3 Infrared Detector301

9.2.2.4 Fourier Transform Infrared Spectra302

9.2.3 Examination Techniques304

9.2.3.1 Transmittance304

9.2.3.2 Solid Sample Preparation304

9.2.3.3 Liquid and Gas Sample Preparation304

9.2.3.4 Reflectance305

9.2.4 Fourier Transform Infrared Microspectroscopy307

9.2.4.1 Instrumentation307

9.2.4.2 Applications309

9.3 Raman Microscopy310

9.3.1 Instrumentation310

9.3.1.1 Laser Source311

9.3.1.2 Microscope System311

9.3.1.3 Prefilters312

9.3.1.4 Diffraction Grating313

9.3.1.5 Detector314

9.3.2 Fluorescence Problem314

9.3.3 Raman Imaging315

9.3.4 Applications316

9.3.4.1 Phase Identification317

9.3.4.2 Polymer Identification319

9.3.4.3 Composition Determination319

9.3.4.4 Determination of Residual Strain321

9.3.4.5 Determination of Crystallographic Orientation322

9.4 Interpretation of Vibrational Spectra323

9.4.1 Qualitative Methods323

9.4.1.1 Spectrum Comparison323

9.4.1.2 Identifying Characteristic Bands324

9.4.1.3 Band Intensities327

9.4.2 Quantitative Methods327

9.4.2.1 Quantitative Analysis of Infrared Spectra327

9.4.2.2 Quantitative Analysis of Raman Spectra330

References331

Further Reading332

10 Thermal Analysis333

10.1 Common Characteristics333

10.1.1 Thermal Events333

10.1.1.1 Enthalpy Change335

10.1.2 Instrumentation335

10.1.3 Experimental Parameters336

10.2 Differential Thermal Analysis and Differential Scanning Calorimetry337

10.2.1 Working Principles337

10.2.1.1 Differential Thermal Analysis337

10.2.1.2 Differential Scanning Calorimetry338

10.2.1.3 Temperature-Modulated Differential Scanning Calorimetry340

10.2.2 Experimental Aspects342

10.2.2.1 Sample Requirements342

10.2.2.2 Baseline Determination343

10.2.2.3 Effects of Scanning Rate344

10.2.3 Measurement of Temperature and Enthalpy Change345

10.2.3.1 Transition Temperatures345

10.2.3.2 Measurement of Enthalpy Change347

10.2.3.3 Calibration of Temperature and Enthalpy Change348

10.2.4 Applications348

10.2.4.1 Determination of Heat Capacity348

10.2.4.2 Determination of Phase Transformation and Phase Diagrams350

10.2.4.3 Applications to Polymers351

10.3 Thermogravimetry353

10.3.1 Instrumentation354

10.3.2 Experimental Aspects355

10.3.2.1 Samples355

10.3.2.2 Atmosphere356

10.3.2.3 Temperature Calibration358

10.3.2.4 Heating Rate359

10.3.3 Interpretation of Thermogravimetric Curves360

10.3.3.1 Types of Curves360

10.3.3.2 Temperature Determination362

10.3.4 Applications362

References365

Further Reading365

Index367

热门推荐