图书介绍
FUNDAMENTALS OF AERODYNAMICS FOURTH EDITIONPDF|Epub|txt|kindle电子书版本网盘下载
- JOHN D.ANDERSON 著
- 出版社: MC GRAW HILL
- ISBN:9780072950465
- 出版时间:2007
- 标注页数:1008页
- 文件大小:157MB
- 文件页数:1031页
- 主题词:
PDF下载
下载说明
FUNDAMENTALS OF AERODYNAMICS FOURTH EDITIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART 1Fundamental Principles1
Chapter1 Aerodynamics:Some Introductory Thoughts3
1.1 Importance of Aerodynamics:Historical Examples5
1.2 Aerodynamics:Classification and Practical Objectives11
1.3 Road Map for This Chapter14
1.4 Some Fundamental Aerodynamic Variables15
1.4.1 Units18
1.5 Aerodynamic Forces and Moments19
1.6 Center of Pressure32
1.7 Dimensional Analysis:The Buckingham Pi Theorem34
1.8 Flow Similarity40
1.9 Fluid Statics:Buoyancy Force51
1.10 Types of Flow57
1.10.1 Continuum Versus Free Molecule Flow58
1.10.2 Inviscid Versus Viscous Flow58
1.10.3 Incompressible Versus Compressible Flows60
1.10.4 Mach Number Regimes60
1.11 Viscous Flow:Introduction to Boundary Layers64
1.12 Applied Aerodynamics:The Aerodynamic Coefficients—Their Magnitudes and Variations71
1.13 Historical Note:The Illusive Center of Pressure83
1.14 Historical Note:Aerodynamic Coefficients87
1.15 Summary91
1.16 Problems92
Chapter 2 Aerodynamics:Some Fundamental Principles and Equations95
2.1 Introduction and Road Map96
2.2 Review of Vector Relations97
2.2.1 Some Vector Algebra98
2.2.2 Typical Orthogonal Coordinate Systems99
2.2.3 Scalar and Vector Fields102
2.2.4 Scalar and Vector Products102
2.2.5 Gradient of a Scalar Field103
2.2.6 Divergence of a Vector Field105
2.2.7 Curl of a Vector Field106
2.2.8 Line Integrals106
2.2.9 Surface Integrals107
2.2.10 Volume Integrals108
2.2.11 Relations Between Line,Surface,and Volume Integrals109
2.2.12 Summary109
2.3 Models of the Fluid:Control Volumes and Fluid Elements109
2.3.1 Finite Control Volume Approach110
2.3.2 Infinitesimal Fluid Element Approach111
2.3.3 Molecular Approach111
2.3.4 Physical Meaning of the Divergence of Velocity112
2.3.5 Specification of the Flow Field113
2.4 Continuity Equation117
2.5 Momentum Equation122
2.6 An Application of the Momentum Equation:Drag of a Two-Dimensional Body127
2.6.1 Comment136
2.7 Energy Equation136
2.8 Interim Summary141
2.9 Substantial Derivative142
2.10 Fundamental Equations in Terms of the Substantial Derivative145
2.11 Pathlines,Streamlines,and Streaklines of a Flow147
2.12 Angular Velocity,Vorticity,and Strain152
2.13 Circulation162
2.14 Stream Function165
2.15 Velocity Potential169
2.16 Relationship Between the Stream Function and Velocity Potential171
2.17 How Do We Solve the Equations?172
2.17.1 Theoretical (Analytical) Solutions172
2.17.2 Numerical Solutions—Computational Fluid Dynamics (CFD)174
2.17.3 The Bigger Picture181
2.18 Summary181
2.19 Problems185
PART 2 Inviscid,Incompressible Flow187
Chapter 3 Fundamentals of Inviscid,Incompressible Flow189
3.1 Introduction and Road Map190
3.2 Bernoulli’s Equation193
3.3 Incompressible Flow in a Duct:The Venturi and Low-Speed Wind Tunnel197
3.4 Pitot Tube:Measurement of Airspeed210
3.5 Pressure Coefficient219
3.6 Condition on Velocity for Incompressible Flow221
3.7 Governing Equation for Irrotational,Incompressible Flow:Laplace’s Equation222
3.7.1 Infinity Boundary Conditions225
3.7.2 Wall Boundary Conditions225
3.8 Interim Summary226
3.9 Uniform Flow:Our First Elementary Flow227
3.10 Source Flow:Our Second Elementary Flow229
3.11 Combination of a Uniform Flow with a Source and Sink233
3.12 Doublet Flow:Our Third Elementary Flow237
3.13 Nonlifting Flow over a Circular Cylinder239
3.14 Vortex Flow:Our Fourth Elementary Flow245
3.15 Lifting Flow over a Cylinder249
3.16 The Kutta-Joukowski Theorem and the Generation of Lift262
3.17 Nonlifting Flows over Arbitrary Bodies:The Numerical Source Panel Method264
3.18 Applied Aerodynamics:The Flow over a Circular Cylinder—The Real Case274
3.19 Historical Note:Bernoulli and Euler—The Origins of Theoretical Fluid Dynamics282
3.20 Historical Note:d’Alembert and His Paradox287
3.21 Summary288
3.22 Problems291
Chapter 4 Incompressible Flow over Airfoils295
4.1 Introduction297
4.2 Airfoil Nomenclature300
4.3 Airfoil Characteristics302
4.4 Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils:The Vortex Sheet307
4.5 The Kutta Condition312
4.5.1 Without Friction Could We Have Lift?316
4.6 Kelvin’s Circulation Theorem and the Starting Vortex316
4.7 Classical Thin Airfoil Theory:The Symmetric Airfoil319
4.8 The Cambered Airfoil329
4.9 The Aerodynamic Center:Additional Considerations338
4.10 Lifting Flows over Arbitrary Bodies:The Vortex Panel Numerical Method342
4.11 Modern Low-Speed Airfoils348
4.12 Viscous Flow:Airfoil Drag352
4.12.1 Estimating Skin-Friction Drag:Laminar Flow353
4.12.2 Estimating Skin-Friction Drag:Turbulent Flow355
4.12.3 Transition357
4.12.4 Flow Separation362
4.12.5 Comment367
4.13 Applied Aerodynamics:The Flow over an Airfoil—The Real Case368
4.14 Historical Note:Early Airplane Design and the Role of Airfoil Thickness379
4.15 Historical Note:Kutta,Joukowski,and the Circulation Theory of Lift384
4.16 Summary386
4.17 Problems388
Chapter 5 Incompressible Flow over Finite Wings391
5.1 Introduction:Downwash and Induced Drag395
5.2 The Vortex Filament,the Biot-Savart Law,and Helmholtz’s Theorems400
5.3 Prandtl’s Classical Lifting-Line Theory404
5.3.1 Elliptical Lift Distribution410
5.3.2 General Lift Distribution415
5.3.3 Effect of Aspect Ratio418
5.3.4 Physical Significance424
5.4 A Numerical Nonlinear Lifting-Line Method433
5.5 The Lifting-Surface Theoryand the Vortex Lattice Numerical Method437
5.6 Applied Aerodynamics:The Delta Wing444
5.7 Historical Note:Lanchester and Prandtl—The Early Development of Finite-Wing Theory456
5.8 Historical Note:Prandtl—The Man460
5.9 Summary463
5.10 Problems464
Chapter 6 Three-Dimensional Incompressible Flow467
6.1 Introduction467
6.2 Three-Dimensional Source468
6.3 Three-Dimensional Doublet470
6.4 Flow over a Sphere472
6.4.1 Comment on the Three-Dimensional Relieving Effect474
6.5 General Three-Dimensional Flows:Panel Techniques475
6.6 Applied Aerodynamics:The Flow over a Sphere—The Real Case477
6.7 Summary480
6.8 Problems481
PART 3Inviscid,Compressible Flow483
Chapter 7 Compressible Flow:Some Preliminary Aspects485
7.1 Introduction486
7.2 A Brief Review of Thermodynamics488
7.2.1 Perfect Gas488
7.2.2 Internal Energy and Enthalpy488
7.2.3 First Law of Thermodynamics492
7.2.4 Entropy and the Second Law of Thermodynamics493
7.2.5 Isentropic Relations495
7.3 Definition of Compressibility497
7.4 Governing Equations for Inviscid,Compressible Flow499
7.5 Definition of Total (Stagnation)Conditions501
7.6 Some Aspects of Supersonic Flow:Shock Waves507
7.7 Summary510
7.8 Problems513
Chapter 8 Normal Shock Waves and Related Topics515
8.1 Introduction516
8.2 The Basic Normal Shock Equations517
8.3 Speed of Sound521
8.4 Special Forms of the Energy Equation527
8.5 When Is a Flow Compressible?534
8.6 Calculation of Normal Shock-Wave Properties537
8.7 Measurement of Velocity in a Compressible Flow548
8.7.1 Subsonic Compressible Flow548
8.7.2 Supersonic Flow549
8.8 Summary553
8.9 Problems556
Chapter 9Oblique Shock and Expansion Waves559
9.1 Introduction560
9.2 Oblique Shock Relations566
9.3 Supersonic Flow over Wedges and Cones580
9.4 Shock Interactions and Reflections583
9.5 Detached Shock Wave in Front of a Blunt Body589
9.6 Prandtl-Meyer Expansion Waves591
9.7 Shock-Expansion Theory:Applications to Supersonic Airfoils602
9.8 A Comment on Lift and Drag Coefficients606
9.9 Viscous Flow:Shock-Wave/Boundary-Layer Interaction606
9.10 Historical Note:Ernst Mach—A Biographical Sketch609
9.11 Summary611
9.12 Problems612
Chapter 10 Compressible Flow Through Nozzles,Diffusers,and Wind Tunnels617
10.1 Introduction618
10.2 Governing Equations for Quasi-One-Dimensional Flow620
10.3 Nozzle Flows629
10.3.1 More on Mass Flow643
10.4 Diffusers644
10.5 Supersonic Wind Tunnels646
10.6 Viscous Flow:Shock-Wave/Boundary-Layer Interaction Inside Nozzles652
10.7 Summary654
10.8 Problems655
Chapter 11 Subsonic Compressible Flow over Airfoils:Linear Theory657
11.1 Introduction658
11.2 The Velocity Potential Equation660
11.3 The Linearized Velocity Potential Equation663
11.4 Prandtl-Glauert Compressibility Correction668
11.5 Improved Compressibility Corrections673
11.6 Critical Mach Number674
11.6.1 A Comment on the Location of Minimum Pressure (Maximum Velocity)683
11.7 Drag-Divergence Mach Number:The Sound Barrier683
11.8 The Area Rule691
11.9 The Supercritical Airfoil693
11.10 CFD Applications:Transonic Airfoils and Wings695
11.11 Historical Note:High-Speed Airfoils—Early Research and Development700
11.12 Historical Note:Richard T.Whitcomb—Architect of the Area Rule and the Supercritical Wing704
11.13 Summary706
11.14 Problems707
Chapter 12 Linearized Supersonic Flow709
12.1 Introduction710
12.2 Derivation of the Linearized Supersonic Pressure Coefficient Formula710
12.3 Application to Supersonic Airfoils714
12.4 Viscous Flow:Supersonic Airfoil Drag720
12.5 Summary723
12.6 Problems724
Chapter13 Introduction to Numerical Techniques for Nonlinear Supersonic Flow725
13.1 Introduction:Philosophy of Computational Fluid Dynamics726
13.2 Elements of the Method of Characteristics728
13.2.1 Internal Points734
13.2.2 Wall Points735
13.3 Supersonic Nozzle Design736
13.4 Elements of Finite-Difference Methods739
13.4.1 Predictor Step745
13.4.2 Corrector Step745
13.5 The Time-Dependent Technique:Application to Supersonic Blunt Bodies746
13.5.1 Predictor Step750
13.5.2 Corrector Step750
13.6 Summary754
13.7 Problem754
Chapter 14 Elements of Hypersonic Flow757
14.1 Introduction758
14.2 Qualitative Aspects of Hypersonic Flow759
14.3 Newtonian Theory763
14.4 The Lift and Drag of Wings at Hypersonic Speeds:Newtonian Results for a Flat Plate at Angle of Attack767
14.4.1 Accuracy Considerations774
14.5 Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory778
14.6 Mach Number Independence782
14.7 Hypersonics and Computational Fluid Dynamics784
14.8 Summary787
14.9 Problems787
PART4 Viscous Flow789
Chapter 15 Introduction to the Fundamental Principles and Equations of Viscous Flow791
15.1 Introduction792
15.2 Qualitative Aspects of Viscous Flow793
15.3 Viscosity and Thermal Conduction801
15.4 The Navier-Stokes Equations806
15.5 The Viscous Flow Energy Equation810
15.6 Similarity Parameters814
15.7 Solutions of Viscous Flows:A Prelimina ryDiscussion818
15.8 Summary821
15.9 Problems823
Chapter16 Some Special Cases; Couette and Poiseuille Flows825
16.1 Introduction825
16.2 Couette Flow:General Discussion826
16.3 Incompressible (Constant Property)Couette Flow830
16.3.1 Negligible Viscous Dissipation836
16.3.2 Equal Wall Temperatures837
16.3.3 Adiabatic Wall Conditions (Adiabatic Wall Temperature)839
16.3.4 Recovery Factor842
16.3.5 Reynolds Analogy843
16.3.6 Interim Summary844
16.4 Compressible Couette Flow846
16.4.1 Shooting Method848
16.4.2 Time-Dependent Finite-Difference Method850
16.4.3 Results for Compressible Couette Flow854
16.4.4 Some Analytical Considerations856
16.5 Two-Dimensional Poiseuille Flow861
16.6 Summary865
16.6.1 Couette Flow865
16.6.2 Poiseuille Flow865
Chapter 17 Introduction to Boundary Layers867
17.1 Introduction868
17.2 Boundary-Layer Properties870
17.3 The Boundary-Layer Equations876
17.4 How Do We Solve the Boundary-Layer Equations?879
17.5 Summary881
Chapter 18 Laminar Boundary Layers883
18.1 Introduction883
18.2 Incompressible Flow over a Flat Plate:The Blasius Solution884
18.3 Compressible Flow over a Flat Plate891
18.3.1 A Comment on Drag Variation with Velocity902
18.4 The Reference Temperature Method903
18.4.1 Recent Advances:The Meador-Smart Reference Temperature Method906
18.5 Stagnation Point Aerodynamic Heating907
18.6 Boundary Layers over Arbitrary Bodies:Finite-Difference Solution913
18.6.1 Finite-Difference Method914
18.7 Summary919
18.8 Problems920
Chapter 19 Turbulent Boundary Layers921
19.1 Introduction922
19.2 Results for Turbulent Boundary Layers on a Flat Plate922
19.2.1 Reference Temperature Method for Turbulent Flow924
19.2.2 The Meador-Smart Reference Temperature Method for Turbulent Flow926
19.2.3 Prediction of Airfoil Drag927
19.3 Turbulence Modeling927
19.3.1 The Baldwin-Lomax Model928
19.4 Final Comments930
19.5 Summary931
19.6 Problems932
Chapter 20 Navier-Stokes Solutions:Some Examples933
20.1 Introduction934
20.2 The Approach934
20.3 Examples of Some Solutions935
20.3.1 Flow over a Rearward-Facing Step935
20.3.2 Flow over an Airfoil935
20.3.3 Flow over a Complete Airplane938
20.3.4 Shock-Wave/Boundary-Layer Interaction939
20.3.5 Flow over an Airfoil with a Protuberance940
20.4 The Issue of Accuracy for the Prediction of Skin Friction Drag942
20.5 Summary947
Appendix A Isentropic Flow Properties949
Appendix B Normal Shock Properties955
Appendix C Prandtl-Meyer Function and Mach Angle959
Appendix D Standard Atmosphere,SI Units963
Appendix E Standard Atmosphere,English Engineering Units973
Bibliography981
Index987