图书介绍

PARTIAL DIFFERENTIAL EQUATIONSPDF|Epub|txt|kindle电子书版本网盘下载

PARTIAL DIFFERENTIAL EQUATIONS
  • 出版社:
  • ISBN:
  • 出版时间:未知
  • 标注页数:248页
  • 文件大小:10MB
  • 文件页数:256页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

PARTIAL DIFFERENTIAL EQUATIONSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ.DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS1

1.1.Some definitions and examples1

1.2.The classification of equations and their solutions6

1.3.Power series solutions and existence theorems12

1.4.Transformations of variables;tensors20

CHAPTER Ⅱ.LINEAR EQUATIONS OF THE FIRST ORDER24

2.1.Homogeneous linear equations24

2.2.The quasi-linear equation of the first order29

2.3.Systems of linear homogeneous equations36

2.4.Adjoint systems40

CHAPTER Ⅲ.NON-LINEAR EQUATIONS OF THE FIRST ORDER47

3.1.Geometric theory of the characteristics47

3.2.Complete integrals55

3.3.The Hamilton-Jacobi theorem58

3.4.Involutory systems62

3.5.Jacobi's integration method66

CHAPTER Ⅳ.LINEAR EQUATIONS OF THE SECOND ORDER70

4.1.Classification;the fundamental tensor71

4.2.Riemannian geometry74

4.3.Green's formula80

4.4.Flat space.Equations with constant coefficients84

4.5.Geodesics and geodesic distance88

CHAPTER Ⅴ.SELF-ADJOINT ELLIPTIC EQUATIONS98

5.1.The Dirichlet integral99

5.2.A maximum principle102

5.3.The local fundamental solution104

5.4.Volume and surface potentials110

5.5.Closed Riemannian spaces116

5.6.The formulation of boundary value problems120

CHAPTER Ⅵ.LINEAR INTEGRAL-EQUATIONS125

6.1.Fredholm's first theorem125

6.2.Fredholm's second theorem130

6.3.Fredholm's third theorem133

6.4.Iterated kernels135

6.5.Symmetric kernels140

6.6.Eigenfunction expansions144

CHAPTER Ⅶ.BOUNDARY VALUE PROBLEMS147

7.1.Poisson'a equation and the fundamental solution in the large147

7.2.Solution of the boundary value problems151

7.3.Representation formulae156

7.4.The kernel function162

CHAPTER Ⅷ.EIGENFUNCTIONS169

8.1.Harmonic functions169

8.2.Harmonic domain functionals173

8.3.The Poisson equation in a closed space177

8.4.Dirichlet's problem for the Poisson equation182

8.5.Eigenfunction expansions185

8.6.Initial value problems190

CHAPTER Ⅸ.NORMAL HYPERBOLIC EQUATIONS195

9.1.Characteristic surfaces195

9.2.Bicharacteristies200

9.3.Discontinuities and singularities205

9.4.The propagation of waves208

9.5.The initial value problem212

CHAPTER Ⅹ.INTEGRATION OF THE WAVE EQUATION217

10.1.The Riemann-Liouville integral217

10.2.The fractional hyperbolic potential220

10.3.The Cauchy problem224

10.4.Verification of the solution226

10.5.Lorentz spaces of even dimension233

10.6.Lorentz spaces of odd dimension236

10.7.The equation in a Riemann space238

BIBLIOGRAPHY244

INDEX246

热门推荐