图书介绍
PARTIAL DIFFERENTIAL EQUATIONSPDF|Epub|txt|kindle电子书版本网盘下载
![PARTIAL DIFFERENTIAL EQUATIONS](https://www.shukui.net/cover/34/34007406.jpg)
- 著
- 出版社:
- ISBN:
- 出版时间:未知
- 标注页数:248页
- 文件大小:10MB
- 文件页数:256页
- 主题词:
PDF下载
下载说明
PARTIAL DIFFERENTIAL EQUATIONSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER Ⅰ.DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS1
1.1.Some definitions and examples1
1.2.The classification of equations and their solutions6
1.3.Power series solutions and existence theorems12
1.4.Transformations of variables;tensors20
CHAPTER Ⅱ.LINEAR EQUATIONS OF THE FIRST ORDER24
2.1.Homogeneous linear equations24
2.2.The quasi-linear equation of the first order29
2.3.Systems of linear homogeneous equations36
2.4.Adjoint systems40
CHAPTER Ⅲ.NON-LINEAR EQUATIONS OF THE FIRST ORDER47
3.1.Geometric theory of the characteristics47
3.2.Complete integrals55
3.3.The Hamilton-Jacobi theorem58
3.4.Involutory systems62
3.5.Jacobi's integration method66
CHAPTER Ⅳ.LINEAR EQUATIONS OF THE SECOND ORDER70
4.1.Classification;the fundamental tensor71
4.2.Riemannian geometry74
4.3.Green's formula80
4.4.Flat space.Equations with constant coefficients84
4.5.Geodesics and geodesic distance88
CHAPTER Ⅴ.SELF-ADJOINT ELLIPTIC EQUATIONS98
5.1.The Dirichlet integral99
5.2.A maximum principle102
5.3.The local fundamental solution104
5.4.Volume and surface potentials110
5.5.Closed Riemannian spaces116
5.6.The formulation of boundary value problems120
CHAPTER Ⅵ.LINEAR INTEGRAL-EQUATIONS125
6.1.Fredholm's first theorem125
6.2.Fredholm's second theorem130
6.3.Fredholm's third theorem133
6.4.Iterated kernels135
6.5.Symmetric kernels140
6.6.Eigenfunction expansions144
CHAPTER Ⅶ.BOUNDARY VALUE PROBLEMS147
7.1.Poisson'a equation and the fundamental solution in the large147
7.2.Solution of the boundary value problems151
7.3.Representation formulae156
7.4.The kernel function162
CHAPTER Ⅷ.EIGENFUNCTIONS169
8.1.Harmonic functions169
8.2.Harmonic domain functionals173
8.3.The Poisson equation in a closed space177
8.4.Dirichlet's problem for the Poisson equation182
8.5.Eigenfunction expansions185
8.6.Initial value problems190
CHAPTER Ⅸ.NORMAL HYPERBOLIC EQUATIONS195
9.1.Characteristic surfaces195
9.2.Bicharacteristies200
9.3.Discontinuities and singularities205
9.4.The propagation of waves208
9.5.The initial value problem212
CHAPTER Ⅹ.INTEGRATION OF THE WAVE EQUATION217
10.1.The Riemann-Liouville integral217
10.2.The fractional hyperbolic potential220
10.3.The Cauchy problem224
10.4.Verification of the solution226
10.5.Lorentz spaces of even dimension233
10.6.Lorentz spaces of odd dimension236
10.7.The equation in a Riemann space238
BIBLIOGRAPHY244
INDEX246