图书介绍

INTRODUCTION TO KNOT THEORYPDF|Epub|txt|kindle电子书版本网盘下载

INTRODUCTION TO KNOT THEORY
  • RICHARD H. CROWELL RALPH H. FOX 著
  • 出版社: SPRINGER-VERLAG NEW YORK HEIDELBERG BERLIN
  • ISBN:
  • 出版时间:未知
  • 标注页数:182页
  • 文件大小:8MB
  • 文件页数:190页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

INTRODUCTION TO KNOT THEORYPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Prerequisites1

Chapter Ⅰ Knots and Knot Types3

1.Definition of a knot3

2.Tame versus wild knots5

3.Knot projections6

4.Isotopy type,amphicheiral and invertible knots8

Chapter Ⅱ The Fundamental Group13

Introduction13

1.Paths and loops14

2.Classes of paths and loops15

3.Change of basepoint21

4.Induced homomorphisms of fundamental groups22

5.Fundamental group of the circle24

Chapter Ⅲ The Free Groups31

Introduction31

1.The free group F[?]31

2.Reduced words32

3.Free groups35

Chapter Ⅳ Presentation of Groups37

Introduction37

1.Development of the presentation concept37

2.Presentations and preeentation types39

3.The Tietze theorem43

4.Word subgroups and the associated homomorphisms47

5.Free abelian groups50

Chapter Ⅴ Calculation of Fundamental Groups52

Introduction52

1.Retractions and deformations54

2.Homotopy type62

3.The van Kampen theorem63

Chapter Ⅵ Presentation of a Knot Group72

Introduction72

1.The over and under presentations72

2.The over and under presentations,continued78

3.The Wirtinger presentation86

4.Examples of presentations87

5.Existence of nontrivial knot types90

Chapter Ⅶ The Free Calculus and the Elementary Ideals94

Introduction94

1.The group ring94

2.The free calculus96

3.The Alexander matrix100

4.The elementary ideals101

Chapter Ⅷ The Knot Polynomials110

Introduction110

1.The abelianized knot group111

2.The group ring of an infinite cyclic group113

3.The knot polynomials119

4.Knot types and knot polynomials123

Chapter Ⅸ Characteristic Properties of the Knot Polynomials134

Introduction134

1.Operation of the trivializer134

2.Conjugation136

3.Dual presentations137

Appendix Ⅰ.Differentiable Knots are Tame147

Appendix Ⅱ.Categories and groupeids153

Appendix Ⅲ.Proof of the van Kampen theorem156

Guide to the Literature161

Bibliography165

Index178

热门推荐