图书介绍

INTRODUCTION TO FLUID MECHANICS FIFTH EDITION INTERNATIONAL STUDENT VERSIONPDF|Epub|txt|kindle电子书版本网盘下载

INTRODUCTION TO FLUID MECHANICS FIFTH EDITION INTERNATIONAL STUDENT VERSION
  • DONALD F.YOUNG 著
  • 出版社: BRUCE R.MUNSON
  • ISBN:
  • 出版时间:未知
  • 标注页数:0页
  • 文件大小:89MB
  • 文件页数:511页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

INTRODUCTION TO FLUID MECHANICS FIFTH EDITION INTERNATIONAL STUDENT VERSIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 INTRODUCTION1

1.1 Some Characteristics of Fluids3

1.2 Dimensions,Dimensional Homogeneity,and Units3

1.2.1 Systems of Units6

1.3 Analysis of Fluid Behavior9

1.4 Measures of Fluid Mass and Weight9

1.4.1 Density9

1.4.2 Specific Weight10

1.4.3 Specific Gravity10

1.5 Ideal Gas Law11

1.6 Viscosity12

1.7 Compressibility of Fluids17

1.7.1 Bulk Modulus17

1.7.2 Compression and Expansion of Gases18

1.7.3 Speed of Sound19

1.8 Vapor Pressure21

1.9 Surface Tension21

1.10 A Brief Look Back in History24

1.11 Chapter Summary and Study Guide27

Review Problems28

Problems28

2 FLUID STATICS32

2.1 Pressure at a Point33

2.2 Basic Equation for Pressure Field34

2.3 Pressure Variation in a Fluid at Rest36

2.3.1 Incompressible Fluid36

2.3.2 Compressible Fluid38

2.4 Standard Atmosphere39

2.5 Measurement of Pressure39

2.6 Manometry42

2.6.1 Piezometer Tube42

2.6.2 U-Tube Manometer43

2.6.3 Inclined-Tube Manometer46

2.7 Mechanical and Electronic Pressure-Measuring Devices47

2.8 Hydrostatic Force on a Plane Surface47

2.9 Pressure Prism52

2.10 Hydrostatic Force on a Curved Surface54

2.11 Buoyancy,Flotation,and Stability57

2.11.1 Archimedes’ Principle57

2.11.2 Stability59

2.12 Pressure Variation in a Fluid with Rigid-Body Motion60

2.13 Chapter Summary and Study Guide60

References61

Review Problems62

Problems62

3 ELEMENTARY FLUID DYNAMICS——THE BERNOULLI EQUATION68

3.1 Newton’s Second Law69

3.2 F=ma Along a Streamline70

3.3 F=ma Normal to a Streamline74

3.4 Physical Interpretation75

3.5 Static,Stagnation,Dynamic,and Total Pressure78

3.6 Examples of Use of the Bernoulli Equation81

3.6.1 Free Jets81

3.6.2 Confined Flows82

3.6.3 Flowrate Measurement89

3.7 The Energy Line and the Hydraulic Grade Line92

3.8 Restrictions on the Use of the Bernoulli Equation94

3.9 Chapter Summary and Study Guide95

Review Problems96

Problems97

4 FLUID KINEMATICS102

4.1 The Velocity Field103

4.1.1 Eulerian and Lagrangian Flow Descriptions105

4.1.2 One-,Two-,and Three-Dimensional Flows105

4.1.3 Steady and Unsteady Flows106

4.1.4 Streamlines,Streaklines,and Pathlines107

4.2 The Acceleration Field110

4.2.1 The Material Derivative110

4.2.2 Unsteady Effects112

4.2.3 Convective Effects113

4.2.4 Streamline Coordinates114

4.3 Control Volume and System Representations115

4.4 The Reynolds Transport Theorem116

4.4.1 Derivation of the Reynolds Transport Theorem116

4.4.2 Selection of a Control Volume120

4.5 Chapter Summary and Study Guide120

References121

Review Problems121

Problems121

5 FINITE CONTROL VOLUME ANALYSIS125

5.1 Conservation of Mass——The Continuity Equation126

5.1.1 Derivation of the Continuity Equation126

5.1.2 Fixed,Nondeforming Control Volume127

5.1.3 Moving,Nondeforming Control Volume131

5.2 Newton’s Second Law——The Linear Momentum and Moment-of-Momentum Equations133

5.2.1 Derivation of the Linear Momentum Equation133

5.2.2 Application of the Linear Momentum Equation134

5.2.3 Derivation of the Moment-of-Momentum Equation144

5.2.4 Application of the Moment-of-Momentum Equation145

5.3 First Law of Thermodynamics——The Energy Equation152

5.3.1 Derivation of the Energy Equation152

5.3.2 Application of the Energy Equation154

5.3.3 Comparison of the Energy Equation with the Bernoulli Equation157

5.3.4 Application of the Energy Equation to Nonuniform Flows162

5.4 Chapter Summary and Study Guide164

Review Problems166

Problems166

6 DIFFERENTIAL ANALYSIS OF FLUID FLOW175

6.1 Fluid Element Kinematics176

6.1.1 Velocity and Acceleration Fields Revisited176

6.1.2 Linear Motion and Deformation177

6.1.3 Angular Motion and Deformation179

6.2 Conservation of Mass182

6.2.1 Differential Form of Continuity Equation182

6.2.2 Cylindrical Polar Coordinates184

6.2.3 The Stream Function185

6.3 Conservation of Linear Momentum188

6.3.1 Description of Forces Acting on Differential Element189

6.3.2 Equations of Motion191

6.4 Inviscid Flow192

6.4.1 Euler’s Equations of Motion192

6.4.2 The Bernoulli Equation193

6.4.3 Irrotational Flow195

6.4.4 The Bernoulli Equation for Irrotational Flow196

6.4.5 The Velocity Potential196

6.5 Some Basic,Plane Potential Flows199

6.5.1 Uniform Flow201

6.5.2 Source and Sink201

6.5.3 Vortex203

6.5.4 Doublet207

6.6 Superposition of Basic,Plane Potential Flows209

6.6.1 Source in a Uniform Stream——Half-Body209

6.6.2 Flow around a Circular Cylinder212

6.7 Other Aspects of Potential Flow Analysis219

6.8 Viscous Flow219

6.8.1 Stress-Deformation Relationships219

6.8.2 The Navier-Stokes Equations220

6.9 Some Simple Solutions for Laminar,Viscous,Incompressible Fluids221

6.9.1 Steady,Laminar Flow between Fixed Parallel Plates222

6.9.2 Couette Flow224

6.9.3 Steady,Laminar Flow in Circular Tubes227

6.10 Other Aspects of Differential Analysis229

6.11 Chapter Summary and Study Guide230

References232

Review Problems232

Problems232

7 SIMILITUDE,DIMENSIONAL ANALYSIS,AND MODELING238

7.1 Dimensional Analysis239

7.2 Buckingham Pi Theorem240

7.3 Determination of Pi Terms241

7.4 Some Additional Comments about Dimensional Analysis246

7.4.1 Selection of Variables247

7.4.2 Determination of Reference Dimensions247

7.4.3 Uniqueness of Pi Terms247

7.5 Determination of Pi Terms by Inspection248

7.6 Common Dimensionless Groups in Fluid Mechanics249

7.7 Correlation of Experimental Data250

7.7.1 Problems with One Pi Term251

7.7.2 Problems with Two or More Pi Terms252

7.8 Modeling and Similitude254

7.8.1 Theory of Models254

7.8.2 Model Scales258

7.8.3 Distorted Models259

7.9 Some Typical Model Studies260

7.9.1 Flow through Closed Conduits260

7.9.2 Flow around Immersed Bodies262

7.9.3 Flow with a Free Surface264

7.10 Chapter Summary and Study Guide267

References268

Review Problems269

Problems269

8 VISCOUS FLOW IN PIPES274

8.1 General Characteristics of Pipe Flow275

8.1.1 Laminar or Turbulent Flow275

8.1.2 Entrance Region and Fully Developed Flow277

8.2 Fully Developed Laminar Flow278

8.2.1 From F=ma Applied Directly to a Fluid Element278

8.2.2 From the Navier-Stokes Equations282

8.3 Fully Developed Turbulent Flow282

8.3.1 Transition from Laminar to Turbulent Flow283

8.3.2 Turbulent Shear Stress284

8.3.3 Turbulent Velocity Profile285

8.4 Dimensional Analysis of Pipe Flow285

8.4.1 Major Losses286

8.4.2 Minor Losses290

8.4.3 Noncircular Conduits298

8.5 Pipe Flow Examples299

8.5.1 Single Pipes300

8.5.2 Multiple Pipe Systems307

8.6 Pipe Flowrate Measurement309

8.7 Chapter Summary and Study Guide313

References314

Review Problems315

Problems315

9 FLOW OVER IMMERSED BODIES321

9.1 General External Flow Characteristics322

9.1.1 Lift and Drag Concepts322

9.1.2 Characteristics of Flow Past an Object325

9.2 Boundary Layer Characteristics328

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate328

9.2.2 Prandtl/Blasius Boundary Layer Solution330

9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate332

9.2.4 Transition from Laminar to Turbulent Flow334

9.2.5 Turbulent Boundary Layer Flow336

9.2.6 Effects of Pressure Gradient338

9.3 Drag341

9.3.1 Friction Drag342

9.3.2 Pressure Drag342

9.3.3 Drag Coefficient Data and Examples343

9.4 Lift357

9.4.1 Surface Pressure Distribution357

9.4.2 Circulation361

9.5 Chapter Summary and Study Guide363

References364

Review Problems364

Problems364

10 OPEN-CHANNEL FLOW370

10.1 General Characteristics of Open-Channel Flow370

10.2 Surface Waves371

10.2.1 Wave Speed372

10.2.2 Froude Number Effects374

10.3 Energy Considerations374

10.3.1 Specific Energy375

10.4 Uniform Depth Channel Flow378

10.4.1 Uniform Flow Approximations378

10.4.2 The Chezy and Manning Equations378

10.4.3 Uniform Depth Examples381

10.5 Gradually Varied Flow385

10.6 Rapidly Varied Flow386

10.6.1 The Hydraulic Jump386

10.6.2 Sharp-Crested Weirs390

10.6.3 Broad-Crested Weirs393

10.6.4 Underflow Gates395

10.7 Chapter Summary and Study Guide397

References398

Review Problems398

Problems398

11 TURBOMACHINES403

11.1 Introduction404

11.2 Basic Energy Considerations404

11.3 Basic Angular Momentum Considerations408

11.4 The Centrifugal Pump410

11.4.1 Theoretical Considerations410

11.4.2 Pump Performance Characteristics414

11.4.3 System Characteristics and Pump Selection416

11.5 Dimensionless Parameters and Similarity Laws419

11.5.1 Specific Speed422

11.6 Axial-Flow and Mixed-Flow Pumps423

11.7 Turbines426

11.7.1 Impulse Turbines427

11.7.2 Reaction Turbines433

11.8 Compressible Flow Turbomachines436

11.9 Chapter Summary and Study Guide437

References438

Review Problems439

Problems439

A COMPUTATIONAL FLUID DYNAMICS AND FLOWLAB443

B PHYSICAL PROPERTIES OF FLUIDS458

C PROPERTIES OF THE U.S.STANDARD ATMOSPHERE463

D REYNOLDS TRANSPORT THEOREM465

E COMPREHENSIVE TABLE OF CONVERSION FACTORS470

ONLINE APPENDIX LIST474

INDEX475

热门推荐