图书介绍
分子物理学和量子化学基础 第2版PDF|Epub|txt|kindle电子书版本网盘下载
![分子物理学和量子化学基础 第2版](https://www.shukui.net/cover/56/34407435.jpg)
- (德)哈科恩著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7510077821
- 出版时间:2014
- 标注页数:592页
- 文件大小:80MB
- 文件页数:619页
- 主题词:
PDF下载
下载说明
分子物理学和量子化学基础 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 What Is a Molecule?1
1.2 Goals and Methods3
1.3 Historical Remarks4
1.4 The Significance of Molecular Physics and Quantum Chemistry for Other Fields7
2 Mechanical Properties of Molecules,Their Size and Mass9
2.1 Molecular Sizes9
2.2 The Shapes of Molecules17
2.3 Molecular Masses19
2.4 Specific Heat and Kinetic Energy21
Problems23
3 Molecules in Electric and Magnetic Fields27
3.1 Dielectric Properties27
3.2 Nonpolar Molecules29
3.3 Polar Molecules33
3.4 Index of Refraction,Dispersion36
3.5 The Anisotropy of the Polarisability39
3.6 Molecules in Magnetic Fields,Basic Concepts and Definitions40
3.7 Diamagnetic Molecules42
3.8 Paramagnetic Molecules44
Problems46
4 Introduction to the Theory of Chemical Bonding51
4.1 A Brief Review of Quantum Mechanics51
4.2 Heteropolar and Homopolar Bonding56
4.3 The Hydrogen Molecule-Ion,H+ 258
4.4 The Hydrogen Molecule,H265
4.4.1 The Variational Principle65
4.4.2 The Heitler-London Method66
4.4.3 Covalent-Ionic Resonance75
4.4.4 The Hund-Mullikan-Bloch Theory of Bonding in Hydrogen76
4.4.5 Comparison of the Wavefunctions77
4.5 Hybridisation78
Problems83
5 Symmetries and Symmetry Operations:A First Overview89
5.1 Fundamental Concepts89
5.2 Application to Benzene:the π-Electron Wavefunctions by the Hückel Method93
5.3 The Hückel Method Revisited,The Energy of the π-Electrons97
5.4 Slater Determinants101
5.5 The Ethene Wavefunctions.Parity102
5.6 Summary103
Problems104
6 Symmetries and Symmetry Operations.A Systematic Approach107
6.1 Fundamentals107
6.2 Molecular Point Groups112
6.3 The Effect of Symmetry Operations on Wavefunctions116
6.4 Similarity Transformations and Reduction of Matrices119
6.5 Fundamentals of the Theory of Group Representations122
6.5.1 The Concept of the Class122
6.5.2 The Character of a Representation123
6.5.3 The Notation for Irreducible Representations127
6.5.4 The Reduction of a Representation128
6.6 Summary131
6.7 An Example:The H2O Molecule132
Problems142
7 The Multi-Electron Problem in Molecular Physics and Quantum Chemistry147
7.1 Overview and Formulation of the Problem147
7.1.1 The Hamiltonian and the Schr?dinger Equation147
7.1.2 Slater Determinants and Energy Expectation Values148
7.2 The Hartree-Fock Equation.The Self-Consistent Field(SCF)Method151
7.3 The Hartree-Fock Method for a Closed Shell151
7.4 The Unrestricted SCF Method for Open Shells153
7.5 The Restricted SCF Method for Open Shells154
7.6 Correlation Energies156
7.7 Koopman's Theorem156
7.8 Configuration Interactions157
7.9 The Second Quantisation159
7.10 Résumé of the Results of Chapters 4-7161
Problems162
8 Overview of Molecular Spectroscopy Techniques165
8.1 Spectral Regions165
8.2 An Overview of Optical Spectroscopy Methods166
8.3 Other Experimental Methods169
Problems170
9 Rotational Spectroscopy171
9.1 Microwave Spectroscopy171
9.2 Diatomic Molecules172
9.2.1 The Spectrum of the Rigid Rotor (Dumbbell Model)172
9.2.2 Intensities178
9.2.3 The Non-rigid Rotor179
9.3 Isotope Effects182
9.4 The Stark Effect184
9.5 Polyatomic Molecules186
9.6 Some Applications of Rotational Spectroscopy190
Problems190
10 Vibrational Spectroscopy193
10.1 Infrared Spectroscopy193
10.2 Diatomic Molecules:Harmonic Approximation194
10.3 Diatomic Molecules.The Anharmonic Oscillator198
10.4 Rotational-Vibrational Spectra of Diatomic Molecules.The Rotating Oscillator and the Rotational Structure of the Bands205
10.5 The Vibrational Spectra of Polyatomic Molecules212
10.6 Applications of Vibrational Spectroscopy218
10.7 Infrared Lasers219
10.8 Microwave Masers220
Problems222
11 The Quantum-Mechanical Treatment of Rotational and Vibrational Spectra225
11.1 The Diatomic Molecule225
11.1.1 The Born-Oppenheimer Approximation225
11.1.2 Justification of the Approximations232
11.2 The Rotation of Tri-and Polyatomic Molecules234
11.2.1 The Expression for the Rotational Energy234
11.2.2 The Symmetric Top237
11.2.3 The Asymmetric Top238
11.3 The Vibrations of Tri-and Polyatomic Molecules242
11.4 Symmetry and Normal Coordinates249
11.5 Summary255
Problems256
12 Raman Spectra257
12.1 The Raman Effect257
12.2 Vibrational Raman Spectra258
12.3 Rotational Raman Spectra262
12.4 The Influence of Nuclear Spins on the Rotational Structure267
Problems271
13 Electronic States275
13.1 The Structure of Band Spectra275
13.2 Types of Bonding276
13.3 Electronic States of Diatomie Molecules276
13.4 Many-Electron States and Total Electronic States of Diatomic Molecules284
13.5 An Example:the Electronic States of H2293
Problems294
14 The Electronic Spectra of Molecules295
14.1 Vibrational Structure of the Band Systems of Small Molecules;The Franck-Condon Principle295
14.2 The Rotational Structure of Electronic Band Spectra in Small Molecules;Overview and Selection Rules303
14.3 The Rotational Structure of the Band Spectra of Small Molecules;Fortrat Diagrams305
14.4 Dissociation and Predissociation310
14.5 Applications of Band Spectra of Smaller Molecules314
14.6 The Electronic Spectra of Larger Molecules316
Problems324
15 Further Remarks on the Techniques of Molecular Spectroscopy327
15.1 The Absorption of Light327
15.2 Radiationless Processes330
15.3 The Emission of Light331
15.4 Cold Molecules333
15.5 Dye Lasers338
15.6 High-Resolution Two-Photon Spectroscopy339
15.7 Ultrashort Pulse Spectroscopy342
15.8 Photoelectron Spectroscopy343
15.9 High-Resolution Photoelectron Spectroscopy348
Problems349
16 The Interaction of Molecules with Light:Quantum-Mechanical Thatment353
16.1 An Overview353
16.2 Time-Dependent Perturbation Theory354
16.3 Spontaneous and Stimulated Emission and the Absorption of Light by Molecules360
16.3.1 The Form of the Hamiltonian360
16.3.2 Wavefunctions of the Initial and Final States363
16.3.3 The General Form of the Matrix Elements363
16.3.4 Transition Probabilities and the Einstein Coefficients366
16.3.5 The Calculation of the Absorption Coefficient373
16.3.6 Transition Moments,Oscillator Strengths,and Spatial Averaging374
16.4 The Franck-Condon Principle378
16.5 Selection Rules381
16.6 Summary385
17 Theoretical Tratment of the Raman Effect and the Elements of Nonlinear Optics387
17.1 Time-Dependent Perturbation Theory in Higher Orders387
17.2 Theoretical Description of the Raman Effect390
17.3 Two-Photon Absorption400
18 Nuclear Magnetic Resonance403
18.1 Fundamentals of Nuclear Resonance403
18.1.1 Nuclear Spins in a Magnetic Field403
18.1.2 Detection of Nuclear Resonance406
18.2 Proton Resonance in Molecules407
18.2.1 The Chemical Shift407
18.2.2 Fine Structure and the Direct Nuclear Spin-Spin Coupling412
18.2.3 Fine Structure and the Indirect Spin-Spin Coupling Between Two Nuclei413
18.2.4 The Indirect Spin-Spin Interaction Among Several Nuclei415
18.3 Dynamic Processes and Relaxation Times418
18.4 Nuclear Resonance with Other Nuclei422
18.5 Two-Dimensional Nuclear Resonance423
18.5.1 The Basic Concepts423
18.5.2 The Quantum-mechanical Theory of COSY426
18.5.3 The Investigation of Dynamic Processes Using 2-Dimensional Exchange Spectroscopy,in particular NOESY431
18.6 Applications of Nuclear Magnetic Resonance435
Problems435
19 Electron Spin Resonance441
19.1 Fundamentals441
19.2 The g-Factor443
19.3 Hyperfine Structure443
19.4 Fine Structure451
19.5 Calculation of the Fine Structure Tensor and the Spin Wavefunctions of Triplet States453
19.6 Double Resonance Methods:ENDOR461
19.7 Optically Detected Magnetic Resonance(ODMR)463
19.8 Applications of ESR468
Problems469
20 Macromolecules,Biomolecules,and Supermolecules473
20.1 Their Significance for Physics,Chemistry,and Biology473
20.2 Polymers475
20.3 Molecular Recognition,Molecular Inclusion479
20.4 Energy Transfer,Sensitisation482
20.5 Molecules for Photoreactions in Biology486
20.6 Molecules as the Basic Units of Life490
20.7 Molecular Functional Units494
Problems500
21 Experiments on and with Single Molecules503
21.1 Introduction:Why?503
21.2 The Imaging of Single Molecules with X-ray and Electron Beam Methods504
21.3 Scanning Tunnel and Atomic Force Microscopes505
21.4 Optical Spectroscopy of Single Molecules508
21.4.1 Overview508
21.4.2 Experimental Methods510
21.4.3 Single-Molecule Spectroscopy with Relatively Limited Resolution:Spatial Selection511
21.4.4 Measurements with a High Spectral Resolution at Low Temperatures:Spectral Selection512
21.4.5 Some Experimental Results516
21.5 The Electrical Conductivity ofMolecules520
21.5.1 Molecular Wires520
21.5.2 Experimental Results523
22 Molecular Electronics and Other Applications527
22.1 What Is It?527
22.2 Molecules as Switching Elements528
22.3 Molecular Electrical Conductors533
22.4 Molecular Wires538
22.5 Molecules as Energy Conductors542
22.6 Molecular Electronic Functional Units548
22.7 Nanotubes552
22.8 Molecular Storage Elements,Hole-Burning554
22.9 Electroluminescence and Light-Emitting Diodes557
22.10 The Future:Intelligent Molecular Materials558
Problems558
Appendix561
A.1 The Calculation of Expectation Values Using Wavefunctions Represented by Determinants561
A.1.1 Calculation of Determinants561
A.1.2 Calculation of Expectation Values562
A.2 Calculation of the Density of Radiation566
Bibliography569
Subject Index577