图书介绍

分子物理学和量子化学基础 第2版PDF|Epub|txt|kindle电子书版本网盘下载

分子物理学和量子化学基础 第2版
  • (德)哈科恩著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7510077821
  • 出版时间:2014
  • 标注页数:592页
  • 文件大小:80MB
  • 文件页数:619页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

分子物理学和量子化学基础 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 What Is a Molecule?1

1.2 Goals and Methods3

1.3 Historical Remarks4

1.4 The Significance of Molecular Physics and Quantum Chemistry for Other Fields7

2 Mechanical Properties of Molecules,Their Size and Mass9

2.1 Molecular Sizes9

2.2 The Shapes of Molecules17

2.3 Molecular Masses19

2.4 Specific Heat and Kinetic Energy21

Problems23

3 Molecules in Electric and Magnetic Fields27

3.1 Dielectric Properties27

3.2 Nonpolar Molecules29

3.3 Polar Molecules33

3.4 Index of Refraction,Dispersion36

3.5 The Anisotropy of the Polarisability39

3.6 Molecules in Magnetic Fields,Basic Concepts and Definitions40

3.7 Diamagnetic Molecules42

3.8 Paramagnetic Molecules44

Problems46

4 Introduction to the Theory of Chemical Bonding51

4.1 A Brief Review of Quantum Mechanics51

4.2 Heteropolar and Homopolar Bonding56

4.3 The Hydrogen Molecule-Ion,H+ 258

4.4 The Hydrogen Molecule,H265

4.4.1 The Variational Principle65

4.4.2 The Heitler-London Method66

4.4.3 Covalent-Ionic Resonance75

4.4.4 The Hund-Mullikan-Bloch Theory of Bonding in Hydrogen76

4.4.5 Comparison of the Wavefunctions77

4.5 Hybridisation78

Problems83

5 Symmetries and Symmetry Operations:A First Overview89

5.1 Fundamental Concepts89

5.2 Application to Benzene:the π-Electron Wavefunctions by the Hückel Method93

5.3 The Hückel Method Revisited,The Energy of the π-Electrons97

5.4 Slater Determinants101

5.5 The Ethene Wavefunctions.Parity102

5.6 Summary103

Problems104

6 Symmetries and Symmetry Operations.A Systematic Approach107

6.1 Fundamentals107

6.2 Molecular Point Groups112

6.3 The Effect of Symmetry Operations on Wavefunctions116

6.4 Similarity Transformations and Reduction of Matrices119

6.5 Fundamentals of the Theory of Group Representations122

6.5.1 The Concept of the Class122

6.5.2 The Character of a Representation123

6.5.3 The Notation for Irreducible Representations127

6.5.4 The Reduction of a Representation128

6.6 Summary131

6.7 An Example:The H2O Molecule132

Problems142

7 The Multi-Electron Problem in Molecular Physics and Quantum Chemistry147

7.1 Overview and Formulation of the Problem147

7.1.1 The Hamiltonian and the Schr?dinger Equation147

7.1.2 Slater Determinants and Energy Expectation Values148

7.2 The Hartree-Fock Equation.The Self-Consistent Field(SCF)Method151

7.3 The Hartree-Fock Method for a Closed Shell151

7.4 The Unrestricted SCF Method for Open Shells153

7.5 The Restricted SCF Method for Open Shells154

7.6 Correlation Energies156

7.7 Koopman's Theorem156

7.8 Configuration Interactions157

7.9 The Second Quantisation159

7.10 Résumé of the Results of Chapters 4-7161

Problems162

8 Overview of Molecular Spectroscopy Techniques165

8.1 Spectral Regions165

8.2 An Overview of Optical Spectroscopy Methods166

8.3 Other Experimental Methods169

Problems170

9 Rotational Spectroscopy171

9.1 Microwave Spectroscopy171

9.2 Diatomic Molecules172

9.2.1 The Spectrum of the Rigid Rotor (Dumbbell Model)172

9.2.2 Intensities178

9.2.3 The Non-rigid Rotor179

9.3 Isotope Effects182

9.4 The Stark Effect184

9.5 Polyatomic Molecules186

9.6 Some Applications of Rotational Spectroscopy190

Problems190

10 Vibrational Spectroscopy193

10.1 Infrared Spectroscopy193

10.2 Diatomic Molecules:Harmonic Approximation194

10.3 Diatomic Molecules.The Anharmonic Oscillator198

10.4 Rotational-Vibrational Spectra of Diatomic Molecules.The Rotating Oscillator and the Rotational Structure of the Bands205

10.5 The Vibrational Spectra of Polyatomic Molecules212

10.6 Applications of Vibrational Spectroscopy218

10.7 Infrared Lasers219

10.8 Microwave Masers220

Problems222

11 The Quantum-Mechanical Treatment of Rotational and Vibrational Spectra225

11.1 The Diatomic Molecule225

11.1.1 The Born-Oppenheimer Approximation225

11.1.2 Justification of the Approximations232

11.2 The Rotation of Tri-and Polyatomic Molecules234

11.2.1 The Expression for the Rotational Energy234

11.2.2 The Symmetric Top237

11.2.3 The Asymmetric Top238

11.3 The Vibrations of Tri-and Polyatomic Molecules242

11.4 Symmetry and Normal Coordinates249

11.5 Summary255

Problems256

12 Raman Spectra257

12.1 The Raman Effect257

12.2 Vibrational Raman Spectra258

12.3 Rotational Raman Spectra262

12.4 The Influence of Nuclear Spins on the Rotational Structure267

Problems271

13 Electronic States275

13.1 The Structure of Band Spectra275

13.2 Types of Bonding276

13.3 Electronic States of Diatomie Molecules276

13.4 Many-Electron States and Total Electronic States of Diatomic Molecules284

13.5 An Example:the Electronic States of H2293

Problems294

14 The Electronic Spectra of Molecules295

14.1 Vibrational Structure of the Band Systems of Small Molecules;The Franck-Condon Principle295

14.2 The Rotational Structure of Electronic Band Spectra in Small Molecules;Overview and Selection Rules303

14.3 The Rotational Structure of the Band Spectra of Small Molecules;Fortrat Diagrams305

14.4 Dissociation and Predissociation310

14.5 Applications of Band Spectra of Smaller Molecules314

14.6 The Electronic Spectra of Larger Molecules316

Problems324

15 Further Remarks on the Techniques of Molecular Spectroscopy327

15.1 The Absorption of Light327

15.2 Radiationless Processes330

15.3 The Emission of Light331

15.4 Cold Molecules333

15.5 Dye Lasers338

15.6 High-Resolution Two-Photon Spectroscopy339

15.7 Ultrashort Pulse Spectroscopy342

15.8 Photoelectron Spectroscopy343

15.9 High-Resolution Photoelectron Spectroscopy348

Problems349

16 The Interaction of Molecules with Light:Quantum-Mechanical Thatment353

16.1 An Overview353

16.2 Time-Dependent Perturbation Theory354

16.3 Spontaneous and Stimulated Emission and the Absorption of Light by Molecules360

16.3.1 The Form of the Hamiltonian360

16.3.2 Wavefunctions of the Initial and Final States363

16.3.3 The General Form of the Matrix Elements363

16.3.4 Transition Probabilities and the Einstein Coefficients366

16.3.5 The Calculation of the Absorption Coefficient373

16.3.6 Transition Moments,Oscillator Strengths,and Spatial Averaging374

16.4 The Franck-Condon Principle378

16.5 Selection Rules381

16.6 Summary385

17 Theoretical Tratment of the Raman Effect and the Elements of Nonlinear Optics387

17.1 Time-Dependent Perturbation Theory in Higher Orders387

17.2 Theoretical Description of the Raman Effect390

17.3 Two-Photon Absorption400

18 Nuclear Magnetic Resonance403

18.1 Fundamentals of Nuclear Resonance403

18.1.1 Nuclear Spins in a Magnetic Field403

18.1.2 Detection of Nuclear Resonance406

18.2 Proton Resonance in Molecules407

18.2.1 The Chemical Shift407

18.2.2 Fine Structure and the Direct Nuclear Spin-Spin Coupling412

18.2.3 Fine Structure and the Indirect Spin-Spin Coupling Between Two Nuclei413

18.2.4 The Indirect Spin-Spin Interaction Among Several Nuclei415

18.3 Dynamic Processes and Relaxation Times418

18.4 Nuclear Resonance with Other Nuclei422

18.5 Two-Dimensional Nuclear Resonance423

18.5.1 The Basic Concepts423

18.5.2 The Quantum-mechanical Theory of COSY426

18.5.3 The Investigation of Dynamic Processes Using 2-Dimensional Exchange Spectroscopy,in particular NOESY431

18.6 Applications of Nuclear Magnetic Resonance435

Problems435

19 Electron Spin Resonance441

19.1 Fundamentals441

19.2 The g-Factor443

19.3 Hyperfine Structure443

19.4 Fine Structure451

19.5 Calculation of the Fine Structure Tensor and the Spin Wavefunctions of Triplet States453

19.6 Double Resonance Methods:ENDOR461

19.7 Optically Detected Magnetic Resonance(ODMR)463

19.8 Applications of ESR468

Problems469

20 Macromolecules,Biomolecules,and Supermolecules473

20.1 Their Significance for Physics,Chemistry,and Biology473

20.2 Polymers475

20.3 Molecular Recognition,Molecular Inclusion479

20.4 Energy Transfer,Sensitisation482

20.5 Molecules for Photoreactions in Biology486

20.6 Molecules as the Basic Units of Life490

20.7 Molecular Functional Units494

Problems500

21 Experiments on and with Single Molecules503

21.1 Introduction:Why?503

21.2 The Imaging of Single Molecules with X-ray and Electron Beam Methods504

21.3 Scanning Tunnel and Atomic Force Microscopes505

21.4 Optical Spectroscopy of Single Molecules508

21.4.1 Overview508

21.4.2 Experimental Methods510

21.4.3 Single-Molecule Spectroscopy with Relatively Limited Resolution:Spatial Selection511

21.4.4 Measurements with a High Spectral Resolution at Low Temperatures:Spectral Selection512

21.4.5 Some Experimental Results516

21.5 The Electrical Conductivity ofMolecules520

21.5.1 Molecular Wires520

21.5.2 Experimental Results523

22 Molecular Electronics and Other Applications527

22.1 What Is It?527

22.2 Molecules as Switching Elements528

22.3 Molecular Electrical Conductors533

22.4 Molecular Wires538

22.5 Molecules as Energy Conductors542

22.6 Molecular Electronic Functional Units548

22.7 Nanotubes552

22.8 Molecular Storage Elements,Hole-Burning554

22.9 Electroluminescence and Light-Emitting Diodes557

22.10 The Future:Intelligent Molecular Materials558

Problems558

Appendix561

A.1 The Calculation of Expectation Values Using Wavefunctions Represented by Determinants561

A.1.1 Calculation of Determinants561

A.1.2 Calculation of Expectation Values562

A.2 Calculation of the Density of Radiation566

Bibliography569

Subject Index577

热门推荐