图书介绍
图像分析、随机场和动态蒙特卡罗方法PDF|Epub|txt|kindle电子书版本网盘下载
- Gerhard Winkler著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:750623825X
- 出版时间:1999
- 标注页数:324页
- 文件大小:43MB
- 文件页数:337页
- 主题词:
PDF下载
下载说明
图像分析、随机场和动态蒙特卡罗方法PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Introduction1
Part Ⅰ.Bayesian Image Analysis:Introduction13
1.The Bayesian Paradigm13
1.1 The Space of Images13
1.2 The Space of Observations15
1.3 Prior and Posterior Distribution16
1.4 Bayesian Decision Rules19
2.Cleaning Dirty Pictures23
2.1 Distortion of Images23
2.1.1 Physical Digital Imaging Systems23
2.1.2 Posterior Distributions26
2.2 Smoothing29
2.3 Piecewise Smoothing35
2.4 Boundary Extraction43
3.Random Fields47
3.1 Markov Random Fields47
3 2 Gibbs Fields and Potentials51
3.3 More on Potentials57
Part Ⅱ.The Gibbs Sampler and Simulated Annealing65
4.Markov Chains:Limit Theorems65
4.1 Preliminaries65
4.2 The Contraction Coefficient69
4.3 Homogeneous Markov Chains73
4.4 Inhomogeneous Markov Chains76
5.Sampling and Annealing81
5.1 Sampling81
5.2 Simulated Annealing88
5.3 Discussion94
6.Cooling Schedules99
6.1 The ICM Algorithm99
6.2 Exact MAPE Versus Fast Cooling102
6.3 Finite Time Annealing111
7.Sampling and Annealing Revisited113
7.1 A Law of Large Numbers for Inhomogeneous Markov Chains113
7.1.1 The Law of Large Numbers113
7.1.2 A Counterexample118
7.2 A General Theorem121
7.3 Sampling and Annealing under Constraints125
7.3.1 Simulated Annealing126
7.3.2 Simulated Annealing under Constraints127
7.3.3 Sampling with and without Constraints129
Part Ⅲ.More on Sampling and Annealing133
8.Metropolis Algorithms133
8.1 The Metropolis Sampler133
8.2 Convergence Theorems134
8.3 Best Constants139
8.4 About Visiting Schemes141
8.4.1 Systematic Sweep Strategies141
8.4.2 The Influence of Proposal Matrices143
8.5 The Metropolis Algorithm in Combinatorial Optimization148
8.6 Generalizations and Modifications151
8.6.1 Metropolis-Hastings Algorithms151
8.6.2 Threshold Random Search153
9.Alternative Approaches155
9.1 Second Largest Eigenvalues155
9.1.1 Convergence Reproved155
9.1.2 Sampling and Second Largest Eigenvalues159
9.1.3 Continuous Time and Space163
10.Parallel Algorithms167
10.1 Partially Parallel Algorithms168
10.1.1 Synchroneous Updating on Independent Sets168
10.1.2 The Swendson-Wang Algorithm171
10.2 Synchroneous Algorithms173
10.2.1 Introduction173
10.2.2 Invariant Distributions and Convergence174
10.2.3 Support of the Limit Distribution178
10.3 Synchroneous Algorithms and Reversibility182
10.3.1 Preliminaries183
10.3.2 Invariance and Reversibility185
10.3.3 Final Remarks189
Part Ⅳ.Texture Analysis195
11.Partitioning195
11.1 Introduction195
11.2 How to Tell Textures Apart195
11.3 Features196
11.4 Bayesian Texture Segmentation198
11.4.1 The Features198
11.4.2 The Kolmogorov-Smirnov Distance199
11.4.3 A Partition Model199
11.4.4 Optimization201
11.4.5 A Boundary Model203
11.5 Julesz's Conjecture205
11.5.1 Introduction205
11.5.2 Point Processes205
12.Texture Models and Classification209
12.1 Introduction209
12.2 Texture Models210
12.2.1 The φ-Model210
12.2.2 The Autobinomial Model211
12.2.3 Automodels213
12.3 Texture Synthesis214
12.4 Texture Classification216
12.4.1 General Remarks216
12.4.2 Contextual Classification218
12.4.3 MPM Methods219
Part Ⅴ.Parameter Estimation225
13.Maximum Likelihood Estimators225
13.1 Introduction225
13.2 The Likelihood Function225
13.3 Objective Functions230
13.4 Asymptotic Consistency233
14.Spacial ML Estimation237
14.1 Introduction237
14.2 Increasing Observation Windows237
14.3 The Pseudolikelihood Method239
14.4 The Maximum Likelihood Method246
14.5 Computation of ML Estimators247
14.6 Partially Observed Data253
Part Ⅵ.Supplement257
15.A Glance at Neural Networks257
15.1 Introduction257
15.2 Boltzmann Machines257
15.3 A Learning Rule262
16.Mixed Applications269
16.1 Motion269
16.2 Tomographic Image Reconstruction274
16.3 Biological Shape276
Part Ⅶ.Appendix283
A.Simulation of Random Variables283
A.1 Pseudo-random Numbers283
A.2 Discrete Random Variables286
A.3 Local Gibbs Samplers289
A.4 Further Distributions290
A.4.1 Binomial Variables290
A.4.2 Poisson Variables292
A.4.3 Gaussian Variables293
A.4.4 The Rejection Method296
A.4.5 The Polar Method297
B.The Perron-Frobenius Theorem299
C.Concave Functions301
D.A Global Convergence Theorem for Descent Algorithms305
References307
Index321