图书介绍
利率模型理论和实践 第2版 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![利率模型理论和实践 第2版 英文版](https://www.shukui.net/cover/35/34651112.jpg)
- (意)Damiano Brigo,(意)Fabio Mercurio著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:9787510005602
- 出版时间:2010
- 标注页数:981页
- 文件大小:177MB
- 文件页数:1031页
- 主题词:利息率-经济模型-英文
PDF下载
下载说明
利率模型理论和实践 第2版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ.BASIC DEFINITIONS AND NO ARBITRAGE1
1.Definitions and Notation1
1.1 The Bank Account and the Short Rate2
1.2 Zero-Coupon Bonds and Spot Interest Rates4
1.3 Fundamental Interest-Rate Curves9
1.4 Forward Rates11
1.5 Interest-Rate Swaps and Forward Swap Rates13
1.6 Interest-Rate Caps/Floors and Swaptions16
2.No-Arbitrage Pricing and Numeraire Change23
2.1 No-Arbitrage in Continuous Time24
2.2 The Change-of-Numeraire Technique26
2.3 A Change of Numeraire Toolkit(Brigo&Mercurio 2001c)28
2.3.1 A helpful notation:"DC"35
2.4 The Choice of a Convenient Numeraire37
2.5 The Forward Measure38
2.6 The Fundamental Pricing Formulas39
2.6.1 The Pricing of Caps and Floors40
2.7 Pricing Claims with Deferred Payoffs42
2.8 Pricing Claims with Multiple Payoffs42
2.9 Foreign Markets and Numeraire Change44
Part Ⅱ.FROM SHORT RATE MODELS TO HJM51
3.One-factor short-rate models51
3.1 Introduction and Guided Tour51
3.2 Classical Time-Homogeneous Short-Rate Models57
3.2.1 The Vasicek Model58
3.2.2 The Dothan Model62
3.2.3 The Cox,Ingersoll and Ross(CIR)Model64
3.2.4 Affine Term-Structure Models68
3.2.5 The Exponential-Vasicek(EV)Model70
3.3 The Hull-White Extended Vasicek Model71
3.3.1 The Short-Rate Dynamics72
3.3.2 Bond and Option Pricing75
3.3.3 The Construction of a Trinomial Tree78
3.4 Possible Extensions of the CIR Model80
3.5 The Black-Karasinski Model82
3.5.1 The Short-Rate Dynamics83
3.5.2 The Construction of a Trinomial Tree85
3.6 Volatility Structures in One-Factor Short-Rate Models86
3.7 Humped-Volatility Short-Rate Models92
3.8 A General Deterministic-Shift Extension95
3.8.1 The Basic Assumptions96
3.8.2 Fitting the Initial Term Structure of Interest Rates97
3.8.3 Explicit Formulas for European Options99
3.8.4 The Vasicek Case100
3.9 The CIR++ Model102
3.9.1 The Construction of a Trinomial Tree105
3.9.2 Early Exercise Pricing via Dynamic Programming106
3.9.3 The Positivity of Rates and Fitting Quality106
3.9.4 Monte Carlo Simulation109
3.9.5 Jump Diffusion CIR and CIR++ models(JCIR,JCIR++)109
3.10 Deterministic-Shift Extension of Lognormal Models110
3.11 Some Further Remarks on Derivatives Pricing112
3.11.1 Pricing European Options on a Coupon-Bearing Bond112
3.11.2 The Monte Carlo Simulation114
3.11.3 Pricing Early-Exercise Derivatives with a Tree116
3.11.4 A Fundamental Case of Early Exercise:Bermudan-Style Swaptions121
3.12 Implied Cap Volatility Curves124
3.12.1 The Black and Karasinski Model125
3.12.2 The CIR++ Model126
3.12.3 The Extended Exponential-Vasicek Model128
3.13 Implied Swaption Volatility Surfaces129
3.13.1 The Black and Karasinski Model130
3.13.2 The Extended Exponential-Vasicek Model131
3.14 An Example of Calibration to Real-Market Data132
4.Two-Factor Short-Rate Models137
4.1 Introduction and Motivation137
4.2 The Two-Additive-Factor Gaussian Model G2++142
4.2.1 The Short-Rate Dynamics143
4.2.2 The Pricing of a Zero-Coupon Bond144
4.2.3 Volatility and Correlation Structures in Two-Factor Models148
4.2.4 The Pricing of a European Option on a Zero-Coupon Bond153
4.2.5 The Analogy with the Hull-White Two-Factor Model159
4.2.6 The Construction of an Approximating Binomial Tree162
4.2.7 Examples of Calibration to Real-Market Data166
4.3 The Two-Additive-Factor Extended CIR/LS Model CIR2++175
4.3.1 The Basic Two-Factor CIR2 Model176
4.3.2 Relationship with the Longstaff and Schwartz Model(LS)177
4.3.3 Forward-Measure Dynamics and Option Pricing for CIR2178
4.3.4 The CIR2++ Model and Option Pricing179
5.The Heath-Jarrow-Morton(HJM)Framework183
5.1 The HJM Forward-Rate Dynamics185
5.2 Markovianity of the Short-Rate Process186
5.3 The Ritchken and Sankarasubramanian Framework187
5.4 The Mercurio and Moraleda Model191
Part Ⅲ.MARKET MODELS195
6.The LIBOR and Swap Market Models(LFM and LSM)195
6.1 Introduction195
6.2 Market Models:a Guided Tour196
6.3 The Lognormal Forward-LIBOR Model(LFM)207
6.3.1 Some Specifications of the Instantaneous Volatility of Forward Rates210
6.3.2 Forward-Rate Dynamics under Different Numeraires213
6.4 Calibration of the LFM to Caps and Floors Prices220
6.4.1 Piecewise-Constant Instantaneous-Volatility Structures223
6.4.2 Parametric Volatility Structures224
6.4.3 Cap Quotes in the Market225
6.5 The Term Structure of Volatility226
6.5.1 Piecewise-Constant Instantaneous Volatility Structures228
6.5.2 Parametric Volatility Structures231
6.6 Instantaneous Correlation and Terminal Correlation234
6.7 Swaptions and the Lognormal Forward-Swap Model(LSM)237
6.7.1 Swaptions Hedging241
6.7.2 Cash-Settled Swaptions243
6.8 Incompatibility between the LFM and the LSM244
6.9 The Structure of Instantaneous Correlations246
6.9.1 Some convenient full rank parameterizations248
6.9.2 Reduced-rank formulations:Rebonato's angles and eigen-values zeroing250
6.9.3 Reducing the angles259
6.10 Monte Carlo Pricing of Swaptions with the LFM264
6.11 Monte Carlo Standard Error266
6.12 Monte Carlo Variance Reduction:Control Variate Estimator269
6.13 Rank-One Analytical Swaption Prices271
6.14 Rank-r Analytical Swaption Prices277
6.15 A Simpler LFM Formula for Swaptions Volatilities281
6.16 A Formula for Terminal Correlations of Forward Rates284
6.17 Calibration to Swaptions Prices287
6.18 Instantaneous Correlations:Inputs(Historical Estimation) or Outputs(Fitting Parameters)?290
6.19 The exogenous correlation matrix291
6.19.1 Historical Estimation292
6.19.2 Pivot matrices295
6.20 Connecting Caplet and S×1-Swaption Volatilities300
6.21 Forward and Spot Rates over Non-Standard Periods307
6.21.1 Drift Interpolation308
6.21.2 The Bridging Technique310
7.Cases of Calibration of the LIBOR Market Model313
7.1 Inputs for the First Cases315
7.2 Joint Calibration with Piecewise-Constant Volatilities as in TABLE 5315
7.3 Joint Calibration with Parameterized Volatilities as in For-mulation 7319
7.4 Exact Swaptions"Cascade"Calibration with Volatilities as in TABLE 1322
7.4.1 Some Numerical Results330
7.5 A Pause for Thought337
7.5.1 First summary337
7.5.2 An automatic fast analytical calibration of LFM to swaptions.Motivations and plan338
7.6 Further Numerical Studies on the Cascade Calibration Algo-rithm340
7.6.1 Cascade Calibration under Various Correlations and Ranks342
7.6.2 Cascade Calibration Diagnostics:Terminal Correla-tion and Evolution of Volatilities346
7.6.3 The interpolation for the swaption matrix and its im-pact on the CCA349
7.7 Empirically efficient Cascade Calibration351
7.7.1 CCA with Endogenous Interpolation and Based Only on Pure Market Data352
7.7.2 Financial Diagnostics of the RCCAEI test results359
7.7.3 Endogenous Cascade Interpolation for missing swap-tions volatilities quotes364
7.7.4 A first partial check on the calibrated σ parameters stability364
7.8 Reliability:Monte Carlo tests366
7.9 Cascade Calibration and the cap market369
7.10 Cascade Calibration:Conclusions372
8.Monte Carlo Tests for LFM Analytical Approximations377
8.1 First Part.Tests Based on the Kullback Leibler Information(KLI)378
8.1.1 Distance between distributions:The Kullback Leibler information378
8.1.2 Distance of the LFM swap rate from the lognormal family of distributions381
8.1.3 Monte Carlo tests for measuring KLI384
8.1.4 Conclusions on the KLI-based approach391
8.2 Second Part:Classical Tests392
8.3 The"Testing Plan"for Volatilities392
8.4 Test Results for Volatilities396
8.4.1 Case(1):Constant Instantaneous Volatilities396
8.4.2 Case(2):Volatilities as Functions of Time to Maturity401
8.4.3 Case(3):Humped and Maturity-Adjusted Instanta-neous Volatilities Depending only on Time to Maturity410
8.5 The"Testing Plan"for Terminal Correlations421
8.6 Test Results for Terminal Correlations427
8.6.1 Case(ⅰ):Humped and Maturity-Adjusted Instanta-neous Volatilities Depending only on Time to Matu-rity,Typical Rank-Two Correlations427
8.6.2 Case(ⅱ):Constant Instantaneous Volatilities,Typical Rank-Two Correlations430
8.6.3 Case(ⅲ):Humped and Maturity-Adjusted Instanta-neous Volatilities Depending only on Time to Matu-rity,Some Negative Rank-Two Correlations432
8.6.4 Case(ⅳ):Constant Instantaneous Volatilities,Some Negative Rank-Two Correlations438
8.6.5 Case(ⅴ):Constant Instantaneous Volatilities,Perfect Correlations,Upwardly Shifted Φ's439
8.7 Test Results:Stylized Conclusions442
Part Ⅳ.THE VOLATILITY SMILE447
9.Including the Smile in the LFM447
9.1 A Mini-tour on the Smile Problem447
9.2 Modeling the Smile450
10.Local-Volatility Models453
10.1 The Shifted-Lognormal Model454
10.2 The Constant Elasticity of Variance Model456
10.3 A Class of Analytically-Tractable Models459
10.4 A Lognormal-Mixture(LM)Model463
10.5 Forward Rates Dynamics under Different Measures467
10.5.1 Decorrelation Between Underlying and Volatility469
10.6 Shifting the LM Dynamics469
10.7 A Lognormal-Mixture with Different Means(LMDM)471
10.8 The Case of Hyperbolic-Sine Processes473
10.9 Testing the Above Mixture-Models on Market Data475
10.10 A Second General Class478
10.11 A Particular Case:a Mixture of GBM's483
10.12 An Extension of the GBM Mixture Model Allowing for Im-plied Volatility Skews486
10.13 A General Dynamics à la Dupire(1994)489
11.Stochastic-Volatility Models495
11.1 The Andersen and Brotherton-Ratclifie(2001)Model497
11.2 The Wu and Zhang(2002)Model501
11.3 The Piterbarg(2003)Model504
11.4 The Hagan,Kumar,Lesniewski and Woodward(2002)Model508
11.5 The Joshi and Rebonato(2003) Model513
12.Uncertain-Parameter Models517
12.1 The Shifted-Lognormal Model with Uncertain Parameters(SLMUP)519
12.1.1 Relationship with the Lognormal-Mixture LVM520
12.2 Calibration to Caplets520
12.3 Swaption Pricing522
12.4 Monte-Carlo Swaption Pricing524
12.5 Calibration to Swaptions526
12.6 Calibration to Market Data528
12.7 Testing the Approximation for Swaptions Prices530
12.8 Further Model Implications535
12.9 Joint Calibration to Caps and Swaptions539
Part Ⅴ.EXAMPLES OF MARKET PAYOFFS547
13.Pricing Derivatives on a Single Interest-Rate Curve547
13.1 In-Arrears Swaps548
13.2 In-Arrears Caps550
13.2.1 A First Analytical Formula(LFM)550
13.2.2 A Second Analytical Formula(G2++)551
13.3 Autocaps551
13.4 Caps with Deferred Caplets552
13.4.1 A First Analytical Formula(LFM)553
13.4.2 A Second Analytical Formula(G2++)553
13.5 Ratchet Caps and Floors554
13.5.1 Analytical Approximation for Ratchet Caps with the LFM555
13.6 Ratchets(One-Way Floaters)556
13.7 Constant-Maturity Swaps(CMS)557
13.7.1 CMS with the LFM557
13.7.2 CMS with the G2++ Model559
13.8 The Convexity Adjustment and Applications to CMS559
13.8.1 Natural and Unnatural Time Lags559
13.8.2 The Convexity-Adjustment Technique561
13.8.3 Deducing a Simple Lognormal Dynamics from the Ad-justment565
13.8.4 Application to CMS565
13.8.5 Forward Rate Resetting Unnaturally and Average-Rate Swaps566
13.9 Average Rate Caps568
13.10 Captions and Floortions570
13.11 Zero-Coupon Swaptions571
13.12 Eurodollar Futures575
13.12.1 The Shifted Two-Factor Vasicek G2++ Model576
13.12.2 Eurodollar Futures with the LFM577
13.13 LFM Pricing with"In-Between"Spot Rates578
13.13.1 Accrual Swaps579
13.13.2 Trigger Swaps582
13.14 LFM Pricing with Early Exercise and Possible Path Dependence584
13.15 LFM:Pricing Bermudan Swaptions588
13.15.1 Least Squared Monte Carlo Approach589
13.15.2 Carr and Yang's Approach591
13.15.3 Andersen's Approach592
13.15.4 Numerical Example595
13.16 New Generation of Contracts601
13.16.1 Target Redemption Notes602
13.16.2 CMS Spread Options603
14.Pricing Derivatives on Two Interest-Rate Curves607
14.1 The Attractive Features of G2++ for Multi-Curve Payoffs608
14.1.1 The Model608
14.1.2 Interaction Between Models of the Two Curves"1"and"2"610
14.1.3 The Two-Models Dynamics under a Unique Conve-nient Forward Measure611
14.2 Quanto Constant-Maturity Swaps613
14.2.1 Quanto CMS:The Contract613
14.2.2 Quanto CMS:The G2++ Model615
14.2.3 Quanto CMS:Quanto Adjustment621
14.3 Differential Swaps623
14.3.1 The Contract623
14.3.2 Differential Swaps with the G2++ Model624
14.3.3 A Market-Like Formula626
14.4 Market Formulas for Basic Quanto Derivatives626
14.4.1 The Pricing of Quanto Caplets/Floorlets627
14.4.2 The Pricing of Quanto Caps/Floors628
14.4.3 The Pricing of Differential Swaps629
14.4.4 The Pricing of Quanto Swaptions630
14.5 Pricing of Options on two Currency LIBOR Rates633
14.5.1 Spread Options635
14.5.2 Options on the Product637
14.5.3 Trigger Swaps638
14.5.4 Dealing with Multiple Dates639
Part Ⅵ.INFLATION643
15.Pricing of Inflation-Indexed Derivatives643
15.1 The Foreign-Currency Analogy644
15.2 Definitions and Notation645
15.3 The JY Model646
16.Inflation-Indexed Swaps649
16.1 Pricing of a ZCIIS649
16.2 Pricing of a YYIIS651
16.3 Pricing of a YYIIS with the JY Model652
16.4 Pricing of a YYIIS with a First Market Model654
16.5 Pricing of a YYIIS with a Second Market Model657
17.Inflation-Indexed Caplets/Floorlets661
17.1 Pricing with the JY Model661
17.2 Pricing with the Second Market Model663
17.3 Inflation-Indexed Caps665
18.Calibration to market data669
19.Introducing Stochastic Volatility673
19.1 Modeling Forward CPI's with Stochastic Volatility674
19.2 Pricing Formulae676
19.2.1 Exact Solution for the Uncorrelated Case677
19.2.2 Approximated Dynamics for Non-zero Correlations680
19.3 Example of Calibration681
20.Pricing Hybrids with an Inflation Component689
20.1 A Simple Hybrid Payoff689
Part Ⅶ.CREDIT695
21.Introduction and Pricing under Counterparty Risk695
21.1 Introduction and Guided Tour696
21.1.1 Reduced form(Intensity)models697
21.1.2 CDS Options Market Models699
21.1.3 Firm Value(or Structural)Models702
21.1.4 Further Models704
21.1.5 The Multi-name picture:FtD,CDO and Copula Func-tions705
21.1.6 First to Default(FtD)Basket705
21.1.7 Collateralized Debt Obligation(CDO)Tranches707
21.1.8 Where can we introduce dependence?708
21.1.9 Copula Functions710
21.1.10 Dynamic Loss models718
21.1.11 What data are available in the market?719
21.2 Defaultable(corporate)zero coupon bonds723
21.2.1 Defaultable(corporate)coupon bonds724
21.3 Credit Default Swaps and Defaultable Floaters724
21.3.1 CDS payoffs:Different Formulations725
21.3.2 CDS pricing formulas727
21.3.3 Changing filtration:Ft without default VS complete Gt728
21.3.4 CDS forward rates:The first definition730
21.3.5 Market quotes,model independent implied survival probabilities and implied hazard functions731
21.3.6 A simpler formula for calibrating intensity to a single CDS735
21.3.7 Different Definitions of CDS Forward Rates and Anal-gies with the LIBOR and SWAP rates737
21.3.8 Defaultable Floater and CDS739
21.4 CDS Options and Callable Defaultable Floaters743
21.5 Constant Maturity CDS744
21.5.1 Some interesting Financial features of CMCDS745
21.6 Interest-Rate Payoffs with Counterparty Risk747
21.6.1 General Valuation of Counterparty Risk748
21.6.2 Counterparty Risk in single Interest Rate Swaps(IRS)750
22.Intensity Models757
22.1 Introduction and Chapter Description757
22.2 Poisson processes759
22.2.1 Time homogeneous Poisson processes760
22.2.2 Time inhomogeneous Poisson Processes761
22.2.3 Cox Processes763
22.3 CDS Calibration and Implied Hazard Rates/Intensities764
22.4 Inducing dependence between Interest-rates and the default event776
22.5 The Filtration Switching Formula:Pricing under partial in-formation777
22.6 Default Simulation in reduced form models778
22.6.1 Standard error781
22.6.2 Variance Reduction with Control Variate783
22.7 Stochastic Intensity:The SSRD model785
22.7.1 A two-factor shifted square-root diffusion model for intensity and interest rates(Brigo and Alfonsi(2003))786
22.7.2 Calibrating the joint stochastic model to CDS:Sepa-rability789
22.7.3 Discretization schemes for simulating(λ,r)797
22.7.4 Study of the convergence of the discretization schemes for simulating CIR processes(Alfonsi(2005))801
22.7.5 Ganssian dependence mapping:A tractable approxi-mated SSRD812
22.7.6 Numerical Tests:Gaussian Mapping and Correlation Impact815
22.7.7 The impact of correlation on a few"test payoffs"817
22.7.8 A pricing example:A Cancellable Structure818
22.7.9 CDS Options and Jamshidian's Decomposition820
22.7.10 Bermudan CDS Options830
22.8 Stochastic diffusion intensity is not enough:Adding jumps.The JCIR(++)Model830
22.8.1 The jump-diffusion CIR model(JCIR)831
22.8.2 Bond(or Survival Probability)Formula832
22.8.3 Exact calibration of CDS:The JCIR++ model833
22.8.4 Simulation833
22.8.5 Jamshidian's Decomposition834
22.8.6 Attaining high levels of CDS implied volatility836
22.8.7 JCIR(++)models as a multi-name possibility837
22.9 Conclusions and further research838
23.CDS Options Market Models841
23.1 CDS Options and Callable Defaultable Floaters844
23.1.1 Once-callable defaultable floaters846
23.2 A market formula for CDS options and callable defaultable floaters847
23.2.1 Market formulas for CDS Options847
23.2.2 Market Formula for callable DFRN849
23.2.3 Examples of Implied Vol atilities from the Market852
23.3 Towards a Completely Specified Market Model854
23.3.1 First Choice.One-period and two-period rates855
23.3.2 Second Choice:Co-terminal and one-period CDS rates market model860
23.3.3 Third choice.Approximation:One-period CDS rates dynamics861
23.4 Hints at Smile Modeling863
23.5 Constant Maturity Credit Default Swaps(CMCDS)with the market model864
23.5.1 CDS and Constant Maturity CDS864
23.5.2 Proof of the main result867
23.5.3 A few numerical examples869
Part Ⅷ.APPENDICES877
A.Other Interest-Rate Models877
A.1 Brennan and Schwartz's Model877
A.2 Balduzzi,Das,Foresi and Sundaram's Model878
A.3 Flesaker and Hughston's Model879
A.4 Rogers's Potential Approach881
A.5 Markov Functional Models881
B.Pricing Equity Derivatives under Stochastic Rates883
B.1 The Short Rate and Asset-Price Dynamics883
B.1.1 The Dynamics under the Forward Measure886
B.2 The Pricing of a European Option on the Given Asset888
B.3 A More General Model889
B.3.1 The Construction of an Approximating Tree for r890
B.3.2 The Approximating Tree for S892
B.3.3 The Two-Dimensional Tree893
C.A Crash Intro to Stochastic Differential Equations and Pois-son Processes897
C.1 From Deterministic to Stochastic Differential Equations897
C.2 Ito's Formula904
C.3 Discretizing SDEs for Monte Carlo:Euler and Milstein Schemes906
C.4 Examples908
C.5 Two Important Theorems910
C.6 A Crash Intro to Poisson Processes913
C.6.1 Time inhomogeneous Poisson Processes915
C.6.2 Doubly Stochastic Poisson Processes(or Cox Processes)916
C.6.3 Compound Poisson processes917
C.6.4 Jump-diffusion Processes918
D.A Useful Calculation919
E.A Second Useful Calculation921
F.Approximating Diffusions with Trees925
G.Trivia and Frequently Asked Questions931
H.Talking to the Traders935
References951
Index967