图书介绍

概率论教程PDF|Epub|txt|kindle电子书版本网盘下载

概率论教程
  • (德)凯兰克著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510044113
  • 出版时间:2012
  • 标注页数:621页
  • 文件大小:105MB
  • 文件页数:635页
  • 主题词:概率论-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

概率论教程PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Basic Measure Theory1

1.1 Classes of Sets1

1.2 Set Functions12

1.3 The Measure Extension Theorem18

1.4 Measurable Maps34

1.5 Random Variables43

2 Independence49

2.1 Independence ofEvents49

2.2 Independent Random Variables56

2.3 Kolmogorov's 0-1 Law63

2.4 Example:Percolation66

3 Generating Functions77

3.1 Definition and Examples77

3.2 Poisson Approximation80

3.3 Branching Processes82

4 The Integral85

4.1 Construction and Simple Properties85

4.2 Monotone Convergence and Fatou's Lemma93

4.3 Lebesgue Integral versus Riemann Integral95

5 Moments and Laws ofLarge Numbers101

5.1 Moments101

5.2 Weak Law of Large Numbers108

5.3 Strong Law of Large Numbers111

5.4 Speed of Convergence in the Strong LLN119

5.5 The Poisson Process123

6 Convergence Theorems129

6.1 Almost Sure and Measure Convergence129

6.2 Uniform Integrability134

6.3 Exchanging Integral and Differentiation140

7 Lp-Spaces and the Radon-Nikodym Theorem143

7.1 Definitions143

7.2 Inequalities and the Fischer-Riesz Theorem145

7.3 Hilbert Spaces151

7.4 Lebesgue's Decomposition Theorem154

7.5 Supplement:Signed Measures158

7.6 Supplement:Dual Spaces165

8 Conditional Expectations169

8.1 Elementary Conditional Probabilities169

8.2 Conditional Expectations173

8.3 Regular Conditional Distribution179

9 Martingales189

9.1 Processes,Filtrations,Stopping Times189

9.2 Martingales194

9.3 Discrete Stochastic Integral198

9.4 Discrete Martingale Representation Theorem and the CRR Model200

10 Optional Sampling Theorems205

10.1 Doob Decomposition and Square Variation205

10.2 Optional Sampling and Optional Stopping209

10.3 Uniform Integrability and Optional Sampling214

11 Martingale Convergence Theorems and Their Applications217

11.1 Doob's Inequality217

11.2 Martingale Convergence Theorems219

11.3 Example:Branching Process228

12 Backwards Martingales and Exchangeability231

12.1 Exchangeable Families of Random Variables231

12.2 Backwards Martingales236

12.3 De Finetti's Theorem239

13 Convergence of Measures245

13.1 A Topology Primer245

13.2 Weak and Vague Convergence251

13.3 Prohorov's Theorem259

13.4 Application:A Fresh Look at de Finetti's Theorem268

14 Probability Measures on Product Spaces271

14.1 Product Spaces272

14.2 Finite Products and Transition Kernels275

14.3 Kolmogorov's Extension Theorem283

14.4 Markov Semigroups288

15 Characteristic Functions and the Central Limit Theorem293

15.1 Separating Classes of Functions293

15.2 Characteristic Functions:Examples300

15.3 Lévy's Continuity Theorem307

15.4 Characteristic Functions and Moments312

15.5 The Central Limit Theorem317

15.6 Multidimensional Central Limit Theorem324

16 Infinitely Divisible Distributions327

16.1 Lévy-Khinchin Formula327

16.2 Stable Distributions339

17 Markov Chains345

17.1 Definitions and Construction345

17.2 Discrete Markov Chains:Examples352

17.3 Discrcte Markov Processes in Continuous Time356

17.4 Discrete Markov Chains:Recurrence and Transience361

17.5 Application:Recurrence and Transience of Random Walks365

17.6 Invariant Distributions372

18 Convergence of Markov Chains379

18.1 Periodicity of Markov Chains379

18.2 Coupling and Convergence Theorem383

18.3 Markov Chain Monte Carlo Method390

18.4 Speed of Convergence398

19 Markov Chains and Electrical Networks403

19.1 Harmonic Functions404

19.2 Reversible Markov Chains407

19.3 Finite Electrical Networks408

19.4 Recurrence and Transience414

19.5 Network Reduction421

19.6 Random Walk in a Random Environment427

20 Ergodic Theory431

20.1 Definitions431

20.2 Ergodic Theorems435

20.3 Examples437

20.4 Application:Recurrence of Random Walks439

20.5 Mixing442

21 Brownian Motion447

21.1 Continuous Versions447

21.2 Construction and Path Properties454

21.3 Strong Markov Property459

21.4 Supplement:Feller Processes462

21.5 Construction via L2-Approximation465

21.6 The Space C([0,∞))469

21.7 Convergence of Probability Measures on C([0,∞))471

21.8 Donsker's Theorem474

21.9 Pathwise Convergence of Branching Processes477

21.10 Square Variation and Local Martingales483

22 Law of the Iterated Logarithm495

22.1 Iterated Logarithm for the Brownian Motion495

22.2 Skorohod's Embedding Theorem498

22.3 Hartman-Wintner Theorem503

23 Large Deviations505

23.1 Cramér's Theorem506

23.2 Large Deviations Principle510

23.3 Sanov's Theorem514

23.4 Varadhan's Lemma and Free Energy519

24 The Poisson Point Process525

24.1 Random Measures525

24.2 Properties of the Poisson Point Process529

24.3 The Poisson-Dirichlet Distribution535

25 The It? Integral543

25.1 It? Integral with Respect to Brownian Motion543

25.2 It? Integral with Respect to Diffusions551

25.3 The It? Formula554

25.4 Dirichiet Problem and Brownian Motion562

25.5 Recurrence and Transience of Brownian Motion564

26 Stochastic Differential Equations567

26.1 Strong Solutions567

26.2 Weak Solutions and the Martingale Problem576

26.3 Weak Uniqueness via Duality583

References591

Notation Index599

Name Index603

Subject Index607

热门推荐