图书介绍
Structure of materials: an introduction to crystallographyPDF|Epub|txt|kindle电子书版本网盘下载
- Michael E.McHenry 著
- 出版社: Cambridge University Press
- ISBN:
- 出版时间:2012
- 标注页数:0页
- 文件大小:125MB
- 文件页数:774页
- 主题词:
PDF下载
下载说明
Structure of materials: an introduction to crystallographyPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Materials and material properties1
1.1 Materials and structure1
1.2 Organization of the book2
1.3 About length scales3
1.4 Wave-particle duality and the de Broglie relationship7
1.5 What is a material property?9
1.5.1 Definition of a material property9
1.5.2 Directional dependence of properties10
1.5.3 A first encounter with symmetry12
1.5.4 A first encounter with magnetic symmetry15
1.6 So,what is this book all about?17
1.7 Chapter summary19
1.8 Historical notes20
1.9 Selected problems21
2 The periodic table of the elements and interatomic bonds23
2.1 About atoms23
2.1.1 The electronic structure of the atom23
2.1.2 The hydrogenic model24
2.2 The periodic table26
2.2.1 Layout of the periodic table28
2.2.2 Trends across the table31
2.3 Interatomic bonds34
2.3.1 Quantum chemistry34
2.3.2 Interactions between atoms34
2.3.3 The ionic bond36
2.3.4 The covalent bond38
2.3.5 The metallic bond39
2.3.6 The van der Waals bond40
2.3.7 Mixed bonding41
2.3.8 Electronic states and symmetry41
2.3.9 Overview of bond types and material properties42
2.4 Chapter summary43
2.5 Historical notes43
2.6 Selected problems47
3 What is a crystal structure?49
3.1 Periodic arrangements of atoms49
3.2 The space lattice51
3.2.1 Basis vectors and translation vectors51
3.2.2 Some remarks about notation52
3.2.3 More about lattices54
3.3 The four 2-D crystal systems56
3.4 The seven 3-D crystal systems57
3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices60
3.6 Other ways to define a unit cell64
3.7 2-D and 3-D magnetic Bravais lattices66
3.8 Chapter summary71
3.9 Historical notes72
3.10 Selected problems73
4 Crystallographic computations75
4.1 Directions in the crystal lattice75
4.2 Distances and angles in a 3-D lattice76
4.2.1 Distance between two points76
4.2.2 The metric tensor78
4.2.3 The dot product in a crystallographic reference frame80
4.3 Worked examples82
4.3.1 Computation of the length of a vector82
4.3.2 Computation of the distance between two atoms83
4.3.3 Computation of the angle between atomic bonds84
4.3.4 Computation of the angle between lattice directions84
4.3.5 An alternative method for the computation of angles85
4.3.6 Further comments85
4.4 Chapter summary86
4.5 Historical notes87
4.6 Selected problems89
5 Lattice planes90
5.1 Miller indices90
5.2 Families of planes and directions93
5.3 Special case:the hexagonal system94
5.4 Crystal forms96
5.5 Chapter summary101
5.6 Historical notes101
5.7 Selected problems102
6 Reciprocal space104
6.1 The reciprocal basis vectors104
6.2 Reciprocal space and lattice planes108
6.3 The reciprocal metric tensor110
6.3.1 Computation of the angle between planes112
6.3.2 Computation of the length of the reciprocal lattice vector112
6.4 Worked examples114
6.5 Chapter summary119
6.6 Historical notes119
6.7 Selected problems120
7 Additional crystallographic computations122
7.1 The stereographic projection122
7.2 About zones and zone axes125
7.2.1 The vector cross product126
7.2.2 About zones and the zone equation130
7.2.3 The reciprocal lattice and zone equation in the hexagonal system131
7.3 Relations between direct space and reciprocal space133
7.4 Coordinate transformations135
7.4.1 Transformation rules135
7.4.2 Example of a coordinate transformation138
7.4.3 Converting vector components into Cartesian coordinates140
7.5 Examples of stereographic projections143
7.5.1 Stereographic projection of a cubic crystal143
7.5.2 Stereographic projection of a monoclinic crystal146
7.6 Chapter summary149
7.7 Historical notes150
7.8 Selected problems151
8 Symmetry in crystallography152
8.1 Symmetry of an arbitrary object152
8.2 Symmetry operations158
8.2.1 Basic isometric transformations159
8.2.2 Compatibility of rotational symmetries with crystalline translational periodicity160
8.2.3 Operations of the first kind:pure rotations162
8.2.4 Operations of the first kind:pure translations164
8.2.5 Operations of the second kind:pure reflections166
8.2.6 Operations of the second kind:inversions167
8.2.7 Symmetry operations that do not pass through the origin168
8.3 Magnetic symmetry operations169
8.3.1 Time-reversal symmetry and axial vectors169
8.3.2 Time-reversing symmetry operations173
8.4 Combinations of symmetry operations175
8.4.1 Combination of rotations with the inversion center175
8.4.2 Combination of rotations and mirrors177
8.4.3 Combination of rotations and translations178
8.4.4 Combination of mirrors and translations181
8.4.5 Relationships and differences between operations of the first and second kind183
8.4.6 Combinations of magnetic and regular symmetry operators184
8.5 Point symmetry186
8.6 Chapter summary188
8.7 Historical notes190
8.8 Selected problems191
9 Point groups193
9.1 What is a group?193
9.1.1 A simple example193
9.1.2 Group axioms194
9.1.3 Principal properties of groups196
9.2 3-D crystallographic point symmetries197
9.2.1 Step Ⅰ:the proper rotations198
9.2.2 Step Ⅱ:combining proper rotations with two-fold rotations199
9.2.3 Step Ⅲa:combining proper rotations with inversion symmetry201
9.2.4 Step Ⅲb:combining proper rotations with perpendicular reflection elements203
9.2.5 Step Ⅳ:combining proper rotations with coinciding reflection elements204
9.2.6 Step Ⅴa:combining inversion rotations with coinciding reflection elements204
9.2.7 Step Ⅴb:combining proper rotations with coinciding and perpendicular reflection elements205
9.2.8 Step Ⅵ:combining proper rotations206
9.2.9 Step Ⅶ:adding reflection elements to Step Ⅵ207
9.2.10 General remarks208
9.3 2-D crystallographic point symmetries220
9.4 Magnetic point groups221
9.4.1 Derivation221
9.4.2 Visualization of the magnetic point groups223
9.4.3 Color,charge,and time reversal225
9.5 Chapter summary227
9.6 Historical notes228
9.7 Selected problems228
10 Plane groups and space groups230
10.1 Combining translations with point group symmetry230
10.2 Plane groups231
10.2.1 A simple example231
10.2.2 A more complex example233
10.2.3 The 17 plane groups235
10.3 Space groups236
10.3.1 A simple example236
10.3.2 A second simple example238
10.3.3 A more complex example239
10.3.4 The symmorphic space groups240
10.3.5 The non-symmorphic space groups242
10.3.6 Space group generators243
10.3.7 General remarks247
10.4 The International Tables for Crystallography248
10.5 Magnetic space groups253
10.6 Chapter summary255
10.7 Historical notes256
10.8 Selected problems257
11 X-ray diffraction:geometry259
11.1 Properties and generation of X-rays259
11.1.1 How do we generate X-rays?261
11.1.2 Wavelength selection265
11.2 X-rays and crystal lattices268
11.2.1 Scattering of X-rays by lattice planes272
11.2.2 Bragg’s law in reciprocal space276
11.3 Basic experimental X-ray diffraction techniques280
11.3.1 The X-ray powder diffractometer281
11.4 Chapter summary289
11.5 Historical notes289
11.6 Selected problems290
12 X-ray diffraction:intensities291
12.1 Scattering by electrons,atoms,and unit cells291
12.1.1 Scattering by a single electron291
12.1.2 Scattering by a single atom293
12.1.3 Scattering by a single unit cell298
12.2 The structure factor300
12.2.1 Lattice centering and the structure factor300
12.2.2 Symmetry and the structure factor304
12.2.3 Systematic absences and the International Tables for Crystallography307
12.2.4 Examples of structure factor calculations307
12.3 Intensity calculations for diffracted and measured intensities309
12.3.1 Description of the correction factors310
12.3.2 Expressions for the total measured intensity315
12.4 Chapter summary317
12.5 Historical notes317
12.6 Selected problems318
13 Other diffraction techniques320
13.1 Introductory remarks320
13.2 Neutron diffraction321
13.2.1 Neutrons:generation and properties323
13.2.2 Neutrons:wavelength selection325
13.2.3 Neutrons:atomic scattering factors326
13.2.4 Neutrons:scattering geometry and diffracted intensities330
13.2.5 Neutrons:example powder pattern334
13.3 Electron diffraction335
13.3.1 The electron as a particle and a wave335
13.3.2 The geometry of electron diffraction337
13.3.3 The transmission electron microscope338
13.3.4 Basic observation modes in the TEM340
13.3.5 Convergent beam electron diffraction343
13.4 Synchrotron X-ray sources for scattering experiments347
13.4.1 Synchrotron accelerators348
13.4.2 Synchrotron radiation:experimental examples350
13.5 Chapter summary352
13.6 Historical notes352
13.7 Selected problems354
14 About crystal structures and diffraction patterns356
14.1 Crystal structure descriptions356
14.1.1 Space group description356
14.1.2 Graphical representation methods357
14.2 Crystal structures?powder diffraction patterns360
14.2.1 The Ni powder pattern,starting from the known structure361
14.2.2 The NaCl powder pattern,starting from the known structure365
14.2.3 The Ni structure,starting from the experimental powder diffraction pattern369
14.2.4 The NaCl structure,starting from the experimental powder diffraction pattern372
14.2.5 General comments about crystal structure determination375
14.3 Chapter summary380
14.4 Historical notes380
14.5 Selected problems382
15 Non-crystallographic point groups383
15.1 Example of a non-crystallographic point group symmetry383
15.2 Icosahedral and related five-fold symmetry groups384
15.2.1 The icosahedral point groups384
15.2.2 Fullerene molecular structures385
15.2.3 Icosahedral group representations387
15.2.4 Other non-crystallographic point groups with five-fold symmetries390
15.2.5 Descents in symmetry:decagonal and pentagonal groups393
15.3 Non-crystallographic point groups with octagonal symmetry395
15.4 Chapter summary400
15.5 Historical notes400
15.6 Selected problems402
16 Periodic and aperiodic tilings403
16.1 2-D plane tilings403
16.1.1 2-D regular tilings404
16.1.2 2-D Archimedean tilings405
16.1.3 k-uniform regular tilings406
16.1.4 Dual tilings - the Laves tilings407
16.1.5 Tilings without regular vertices408
16.2 Color tilings408
16.3 Quasiperiodic tilings410
16.4 Regular polyhedra and n-D regular polytopes411
16.5 Crystals with stacking of 36 tilings415
16.5.1 Simple close-packed structures:ABC stacking415
16.5.2 Interstitial sites in close-packed structures416
16.5.3 Representation of close-packed structures417
16.5.4 Polytypism and properties of SiC semiconductors419
16.5.5 36 close-packed tilings of polyhedral faces420
16.6 Chapter summary421
16.7 Historical notes422
16.8 Selected problems424
17 Metallic structures Ⅰ:simple,derivative,and superlattice structures425
17.1 Introductory comments425
17.2 Classification of structures426
17.2.1 Strukturbericht symbols426
17.2.2 Pearson symbols427
17.2.3 Structure descriptions in this book427
17.3 Parent structures428
17.3.1 Geometrical calculations for cubic structures430
17.4 Atomic sizes,bonding,and alloy structure431
17.4.1 Hume-Rothery rules432
17.4.2 Bonding in close-packed rare gas and metallic structures433
17.4.3 Phase diagrams437
17.5 Superlattices and sublattices:mathematical definition438
17.6 Derivative structures and superlattice examples439
17.6.1 fcc-derived structures and superlattices439
17.6.2 bcc-derived superlattices444
17.6.3 Diamond cubic derived superlattices446
17.6.4 Hexagonal close-packed derived superlattices448
17.7 Elements with alternative stacking sequences or lower symmetry450
17.7.1 Elements with alternative stacking sequences450
17.7.2 Elements with lower-symmetry structures451
17.8 Natural and artificial superlattices455
17.8.1 Superlattice structures based on the L12 cell455
17.8.2 Artificial superlattices457
17.8.3 X-ray scattering from long-period multi-layered systems459
17.8.4 Incommensurate superlattices459
17.9 Interstitial alloys461
17.10 Chapter summary462
17.11 Historical notes463
17.12 Selected problems464
18 Metallic structures Ⅱ:complex geometrically determined structures466
18.1 Electronic states in metals466
18.2 Topological close packing468
18.2.1 The Kasper polyhedra469
18.2.2 Connectivity of Kasper polyhedra471
18.2.3 Metallic radii471
18.3 Frank-Kasper alloy phases472
18.3.1 A1 5 phases and related structures472
18.3.2 The Laves phases and related structures479
18.3.3 The sigma phase486
18.3.4 The μ-phase and the M-,P-,and R-phases488
18.4 Quasicrystal approximants490
18.4.1 Mg32(Al,Zn)49 and α-Al-Mn-Si crystal structures490
18.4.2 Mg32(Al,Zn)49 and α-Al-Mn-Si shell models491
18.5 Chapter summary494
18.6 Historical notes495
18.7 Selected problems496
19 Metallic structures Ⅲ:quasicrystals497
19.1 Introductory remarks497
19.2 The golden mean and pentagonal symmetry498
19.3 1-D quasicrystals501
19.3.1 The Fibonacci sequence and lattice derived by recursion501
19.3.2 Lattice positions in the Fibonacci lattice503
19.3.3 Construction of the Fibonacci lattice by the projection method504
19.3.4 The Fourier transform of the Fibonacci lattice505
19.4 2-D quasicrystals507
19.4.1 2-D quasicrystals:Penrose tilings507
19.4.2 The Penrose tiling derived by projection512
19.4.3 2-D quasicrystals:other polygonal quasicrystals514
19.5 3-D quasicrystals516
19.5.1 3-D Penrose tilings517
19.5.2 Indexing icosahedral quasicrystal diffraction patterns519
19.5.3 Icosahedral quasicrystal diffraction patterns and quasilattice constants521
19.5.4 3-D Penrose tiles:stacking,decoration,and quasilattice constants522
19.5.5 3-D Penrose tiles:projection method524
19.6 Multiple twinning and icosahedral glass models525
19.7 Microscopic observations of quasicrystal morphologies526
19.8 Chapter summary528
19.9 Historical notes528
19.10 Selected problems530
20 Metallic structures Ⅳ:amorphous metals531
20.1 Introductory comments531
20.2 Order in amorphous and nanocrystalline alloys532
20.3 Atomic positions in amorphous alloys535
20.4 Atomic volume,packing,and bonding in amorphous solids536
20.4.1 DRPHS model537
20.4.2 Binding in clusters:crystalline and icosahedral short-range order539
20.4.3 Icosahedral short-range order models539
20.5 Amorphous metal synthesis540
20.6 Thermodynamic and kinetic criteria for glass formation542
20.7 Examples of amorphous metal alloy systems543
20.7.1 Metal-metalloid systems544
20.7.2 Rare earth-transition metal systems545
20.7.3 Early transition metal-late transition metal systems546
20.7.4 Multi-component nanocomposite systems546
20.7.5 Multi-component bulk amorphous systems548
20.8 X-ray scattering in amorphous materials550
20.9 Extended X-ray absorption fine structure (EXAFS)554
20.10 Mossbauer spectroscopy557
20.11 Chapter summary558
20.12 Historical notes558
20.13 Selected problems560
21 Ceramic structures Ⅰ:basic structure prototypes561
21.1 Introductory remarks561
21.2 Ionic radii562
21.3 Bonding energetics in ionic structures565
21.4 Rules for packing and connectivity in ionic crystals566
21.4.1 Pauling’s rules for ionic structures566
21.4.2 Radius ratio rules for ionic compounds567
21.5 Oxides of iron570
21.6 Halide salt structures:CsCl,NaCl,and CaF2571
21.7 Close-packed sulfide and oxide structures:ZnS and Al2O3574
21.8 Perovskite and spinel structures577
21.8.1 Perovskites:ABO3577
21.8.2 Spinels:AB2O4580
21.9 Non-cubic close-packed structures:NiAs,CdI2,and TiO2584
21.10 Layered structures585
21.10.1 Magnetoplumbite phases586
21.10.2 Aurivillius phases586
21.10.3 Ruddlesden-Popper phases588
21.10.4 Tungsten bronzes589
21.10.5 Titanium carbosulfide591
21.11 Additional remarks591
21.12 Point defects in ceramics592
21.13 Chapter summary594
21.14 Historical notes594
21.15 Selected problems596
22 Ceramic structures Ⅱ:high-temperature superconductors597
22.1 Introductory remarks about superconductivity597
22.2 High-temperature superconductors:nomenclature598
22.3 Perovskite-based high-temperature superconductors599
22.3.1 Single-layer perovskite high-temperature superconductors599
22.3.2 Triple-layer perovskite-based high-temperature superconductors601
22.4 BSCCO,TBCCO,HBCCO,and ACBCCO HTSC layered structures606
22.4.1 The BSCCO double-layer high-temperature superconductors606
22.4.2 The TBCCO double-layer high-temperature superconductors608
22.4.3 The TBCCO single-layer high-temperature superconductors611
22.4.4 The HBCCO high-temperature superconductors613
22.4.5 The ACBCCO high-temperature superconductors615
22.4.6 Rutheno-cuprate high-temperature superconductors615
22.4.7 Infinite-layer high-temperature superconductors616
22.5 Chapter summary616
22.6 Historical notes617
22.7 Selected problems619
23 Ceramic structures Ⅲ:terrestrial and extraterrestrial minerals620
23.1 Classification of minerals620
23.2 Silicates overview622
23.2.1 Orthosilicates (nesosilicates)624
23.2.2 Pyrosilicates (sorosilicates)629
23.2.3 Chains of tetrahedra,metasilicates (inosilicates)630
23.2.4 Double chains of tetrahedra633
23.2.5 Sheets of tetrahedra,phyllosilicates634
23.2.6 Networks of tetrahedra,tectosilicates635
23.2.7 Random networks of tetrahedra:silicate glasses639
23.2.8 Mesoporous silicates641
23.2.9 Sol-gel synthesis of silicate nanostructures642
23.3 Magnetic minerals on Mars and their biogenic origins643
23.3.1 Hydroxides646
23.3.2 Sulfates649
23.4 Chapter summary650
23.5 Historical notes651
23.6 Selected problems652
24 Molecular solids and biological materials653
24.1 Introductory remarks653
24.2 Simple molecular crystals:ice,dry ice,benzene,the clathrates,and self-assembled structures654
24.2.1 Solid H2O:ice654
24.2.2 Solid CO2:dry ice656
24.2.3 Hydrocarbon crystals657
24.2.4 Clathrates658
24.2.5 Amphiphiles and micelles659
24.3 Polymers660
24.3.1 Polymer classification661
24.3.2 Polymerization reactions and products662
24.3.3 Polymer chains:spatial configurations664
24.3.4 Copolymers and self-assembly666
24.3.5 Conducting and superconducting polymers668
24.3.6 Polymeric derivatives of fullerenes670
24.4 Biological macromolecules671
24.4.1 DNA and RNA671
24.4.2 Virus structures674
24.5 Fullerene-based molecular solids677
24.5.1 Fullerites679
24.5.2 Fullerides681
24.5.3 Carbon nanotubes681
24.6 Chapter summary685
24.7 Historical notes685
24.8 Selected problems687
References688
Index716