图书介绍

激光原理 第4版PDF|Epub|txt|kindle电子书版本网盘下载

激光原理 第4版
  • (意)斯维尔托著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:9787506291569
  • 出版时间:2008
  • 标注页数:604页
  • 文件大小:111MB
  • 文件页数:40217113页
  • 主题词:激光理论-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

激光原理 第4版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.Introductory Concepts1

1.1.Spontaneous and Stimulated Emission,Absorption2

1.2.The Laser Idea4

1.3.Pumping Schemes7

1.4.Properties of Laser Beams9

1.4.1.Monochromaticity9

1.4.2.Coherence9

1.4.3.Directionality10

1.4.4.Brightness11

1.4.5.Short Pulse Duration13

1.5.Laser Types14

Problems14

2.Interaction of Radiation with Atoms and Ions17

2.1.Introduction17

2.2.Summary of Blackbody Radiation Theory17

2.2.1.Modes of a Rectangular Cavity19

2.2.2.Rayleigh-Jeans and Planck Radiation Formula22

2.2.3.Planck’s Hypothesis and Field Quantization23

2.3.Spontaneous Emission25

2.3.1.Semiclassical Approach26

2.3.2.Quantum Electrodynamics Approach29

2.3.3.Allowed and Forbidden Transitions31

2.4.Absorption and Stimulated Emission32

2.4.1.Absorption and Stimulated Emission Rates32

2.4.2.Allowed and Forbidden Transitions36

2.4.3.Transition Cross Section, Absorption,and Gain Coefficient37

2.4.4.Einstein Thermodynamic Treatment42

2.5.Line-Broadening Mechanisms43

2.5.1.Homogeneous Broadening44

2.5.2.Inhomogeneous Broadening48

2.5.3.Concluding Remarks49

2.6.Nonradiative Decay and Energy Transfer50

2.6.1.Mechanisms of Nonradiative Decay50

2.6.2.Combined Effects of Radiative and Nonradiative Processes56

2.7.Degenerate or Strongly Coupled Levels58

2.7.1.Degenerate Levels58

2.7.2.Strongly Coupled Levels60

2.8.Saturation64

2.8.1.Saturation of Absorption: Homogeneous Line64

2.8.2.Gain Saturation: Homogeneous Line68

2.8.3.Inhomogeneously Broadened Line69

2.9.Fluourescence Decay of an Optically Dense Medium71

2.9.1.Radiation Trapping71

2.9.2.Amplified Spontaneous Emission71

2.10.Concluding Remarks76

Problems77

References78

3.Energy Levels.Radiative.and Nonradiative Transitions in Molecules and Semiconductors81

3.1.Molecules81

3.1.1.Energy Levels81

3.1.2.Level Occupation at Thermal Equilibrium85

3.1.3.Stimulated Transitions87

3.1.4.Radiative and Nonradiative Decay91

3.2.Bulk Semiconductors92

3.2.1.Electronic States92

3.2.2.Density of States96

3.2.3.Level Occupation at Thermal Equilibrium97

3.2.4.Stimulated Transitions:Selection Rules101

3.2.5.Absorption and Gain Coefficients103

3.2.6.Spontaneous Emission and Nonradiative Decay109

3.2.7.Concluding Remarks111

3.3.Semiconductor Quantum Wells112

3.3.1.Electronic States112

3.3.2.Density of States115

3.3.3.Level Occupation at Thermal Equilibrium117

3.3.4.Stimulated Transitions: Selection Rules118

3.3.5.Absorption and Gain Coefficients120

3.3.6.Strained Quantum Wells123

3.4.Quantum Wires and Quantum Dots125

3.5.Concluding Remarks126

Problems127

References128

4.Ray and Wave Propagation through Optical Media129

4.1.Introduction129

4.2.Matrix Formulation of Geometric Optics129

4.3.Wave Reflection and Transmission at a Dielectric Interface135

4.4.Multilayer Dielectric Coatings137

4.5.Fabry-Perot Interferometer140

4.5.1.Properties of a Fabry-Perot Interferometer140

4.5.2.Fabry-Perot Interferometer as a Spectrometer144

4.6.Diffraction Optics in the Paraxial Approximation145

4.7.Gaussian Beams148

4.7.1.Lowest Order Mode148

4.7.2.Free-Space Propagation151

4.7.3.Gaussian Beams and ABCD Law154

4.7.4.Higher Order Modes155

4.8.Conclusions158

Problems158

References160

5.Passive Optical Resonators161

5.1.Introduction161

5.1.1.Plane Parallel(Fabry-Perot) Resonator162

5.1.2.Concentric (Spherical) Resonator163

5.1.3.Confocal Resonator163

5.1.4.Generalized Spherical Resonator163

5.1.5.Ring Resonator164

5.2.Eigenmodes and Eigenvalues165

5.3.Photon Lifetime and Cavity Q167

5.4.Stability Condition169

5.5.Stable Resonators173

5.5.1.Resonators with Infinite Aperture173

5.5.1.1.Eigenmodes174

5.5.1.2.Eigenvalues178

5.5.1.3.Standing and Traveling Waves in a Two-Mirror Resonator180

5.5.2.Effects of a Finite Aperture181

5.5.3.Dynamically and Mechanically Stable Resonators184

5.6.Unstable Resonators187

5.6.1.Geometric Optics Description188

5.6.2.Wave Optics Description190

5.6.3.Advantages and Disadvantages of Hard-Edge Unstable Resonators193

5.6.4.Unstable Resonators with Variable-Reflectivity Mirrors194

5.7.Concluding Remarks198

Problems198

References200

6.Pumping Processes201

6.1.Introduction201

6.2.Optical Pumping by an Incoherent Light Source204

6.2.1.Pumping Systems204

6.2.2.Pump Light Absorption206

6.2.3.Pump Efficiency and Pump Rate208

6.3.Laser Pumping210

6.3.1.Laser-Diode Pumps212

6.3.2.Pump Transfer Systems214

6.3.2.1.Longitudinal Pumping214

6.3.2.2.Transverse Pumping219

6.3.3.Pump Rate and Pump Efficiency221

6.3.4.Threshold Pump Power for Four-Level and Quasi-Three-Level Lasers223

6.3.5.Comparison between Diode Pumping and Lamp Pumping226

6.4.Electrical Pumping228

6.4.1.Electron Impact Excitation231

6.4.1.1.Electron Impact Cross Section232

6.4.2.Thermal and Drift Velocities235

6.4.3.Electron Energy Distribution237

6.4.4.Ionization Balance Equation240

6.4.5.Scaling Laws for Electrical Discharge Lasers241

6.4.6.Pump Rate and Pump Efficiency242

6.5.Conclusions244

Problems244

References247

7.Continuous Wave Laser Behavior249

7.1.Introduction249

7.2.Rate Equations249

7.2.1.Four-Level Laser250

7.2.2.Quasi-Three-Level Laser255

7.3.Threshold Conditions and Output Power:Four-Level Laser258

7.3.1.Space-Independent Model258

7.3.2.Space-Dependent Model265

7.4.Threshold Condition and Output Power:Quasi-Three-Level Laser273

7.4.1.Space-Independent Model273

7.4.2.Space-Dependent Model274

7.5.Optimum Output Coupling277

7.6.Laser Tuning279

7.7.Reasons for Multimode Oscillation281

7.8.Single-Mode Selection284

7.8.1.Single-Transverse-Mode Selection284

7.8.2.Single-Longitudinal-Mode Selection285

7.8.2.1.Fabry-Perot Etalons as Mode-Selective Elements285

7.8.2.2.Single-Mode Selection in Unidirectional Ring Resonators288

7.9.Frequency Pulling and Limit to Monochrornaticity291

7.10.Laser Frequency Fluctuations and Frequency Stabilization293

7.11.Intensity Noise and Intensity Noise Reduction297

7.12.Conclusions300

Problems301

References303

8.Transient Laser Behavior305

8.1.Introduction305

8.2.Relaxation Oscillations305

8.3.Dynamic Instabilities and Pulsations in Lasers310

8.4.Q-Switching311

8.4.1.Dynamics of the Q-Switching Process311

8.4.2.Q-Switching Methods313

8.4.2.1.Electrooptical Q-Switching313

8.4.2.2.Rotating Prisms315

8.4.2.3.Acoustooptic Q-Switches316

8.4.2.4.Saturable Absorber Q-Switch317

8.4.3.Operating Regimes319

8.4.4.Theory of Active Q-Switching321

8.5.Gain Switching329

8.6.Mode Locking330

8.6.1.Frequency-Domain Description331

8.6.2.Time-Domain Picture336

8.6.3.Mode-Locking Methods337

8.6.3.1.Active Mode Locking337

8.6.3.2.Passive Mode Locking342

8.6.4.Role of Cavity Dispersion in Femtosecond Mode-Locked Lasers347

8.6.4.1.Phase Velocity,Group Velocity,and Group-Delay Dispersion347

8.6.4.2.Limitation on Pulse Duration Due to Group-Delay Dispersion350

8.6.4.3.Dispersion Compensation351

8.6.4.4.Soliton-Type Mode Locking353

8.6.5.Mode-Locking Regimes and Mode-Locking System355

8.7.Cavity Dumping359

8.8.Concluding Remarks361

Problems361

References363

9.Solid-State,Dye,and Semiconductor Lasers365

9.1.Introduction365

9.2.Solid-State Lasers365

9.2.1.Ruby Laser367

9.2.2.Neodymium Lasers370

9.2.2.1.Nd:YAG Laser370

9.2.2.2.Nd:Glass Laser373

9.2.2.3.Other Crystalline Hosts373

9.2.3.Yb:YAG Laser374

9.2.4.Er:YAG and Yb:Er:Glass Lasers376

9.2.5.Tm:Ho:YAG Laser377

9.2.6.Fiber Lasers378

9.2.7.Alexandrite Laser381

9.2.8.Titanium Sapphire Laser383

9.2.9.Cr:LiSAF and Cr:LiCAF Lasers385

9.3.Dye Lasers386

9.3.1.Photophysical Properties of Organic Dyes387

9.3.2.Characteristics of Dye Lasers391

9.4.Semiconductor Lasers394

9.4.1.Principle of Semiconductor Laser Operation394

9.4.2.Homojunction Lasers396

9.4.3.Double-Heterostructure Lasers398

9.4.4.Quantum Well Lasers402

9.4.5.Laser Devices and Performances405

9.4.6.Distributed Feedback and Distributed Bragg Reflector Lasers408

9.4.7.Vertical-Cavity Surface-Emitting Lasers411

9.4.8.Semiconductor Laser Applications413

9.5.Conclusions415

Problems415

References417

10.Gas,Chemical,Free-Electon,and X-Ray Lasers419

10.1.Introduction419

10.2.Gas Lasers419

10.2.1.Neutral Atom Lasers420

10.2.1.1.Helium Neon Laser420

10.2.1.2.Copper Vapor Laser425

10.2.2.Ion Lasers427

10.2.2.1.Argon Laser427

10.2.2.2.He-Cd Laser430

10.2.3.Molecular Gas Lasers432

10.2.3.1.CO2 Laser432

10.2.3.2.CO Laser442

10.2.3.3.Nitrogen Laser444

10.2.3.4.Excimer Lasers445

10.3.Chemical Lasers448

10.4.Free-Electron Lasers452

10.5.X-Ray Lasers456

10.6.Concluding Remarks458

Problems459

References460

11.Properties of Laser Beams463

11.1.Introduction463

11.2.Monochromaticity463

11.3.First-Order Coherence464

11.3.1.Degree of Spatial and Temporal Coherence464

11.3.2.Measurement of Spatial and Temporal Coherence468

11.3.3.Relation between Temporal Coherence and Monochromaticity471

11.3.4.Nonstationary Beams473

11.3.5.Spatial and Temporal Coherence of Single-Mode and Multimode Lasers473

11.3.6.Spatial and Temporal Coherence of a Thermal Light Source475

11.4.Directionality476

11.4.1.Beams with Perfect Spatial Coherence477

11.4.2.Beams with Partial Spatial Coherence479

11.4.3.The M2 Factor and the Spot Size Parameter of a Multimode Laser Beam480

11.5.Laser Speckle483

11.6.Brightness486

11.7.Statistical Properties of Laser Light and Thermal Light487

11.8.Comparison between Laser Light and Thermal Light489

Problems491

References492

12.Laser Beam Transformation:Propagation,Amplification,Frequency Conversion,Pulse Compression,and Pulse Expansion493

12.1.Introduction493

12.2.Spatial Transformation:Propagation of a Multimode Laser Beam494

12.3.Amplitude Transformation:Laser Amplification495

12.3.1.Examples of Laser Amplifiers: Chirped-Pulse-Amplification500

12.4.Frequency Conversion: Second-Harmonic Generation and Parametric Oscillation504

12.4.1.Physical Picture504

12.4.1.1.Second Harmonic Generation505

12.4.1.2.Parametric Oscillation512

12.4.2.Analytical Treatment514

12.4.2.1.Parametric Oscillation516

12.4.2.2.Second-Harmonic Generation520

12.5.Transformation in Time523

12.5.1.Pulse Compression524

12.5.2.Pulse Expansion529

Problems530

References532

Appendixes535

A.Semiclassical Treatment of the Interaction of Radiation and Matter535

B.Lineshape Calculation for Collision Broadening541

C.Simplified Treatment of Amplified Spontaneous Emission545

References548

D.Calculation of the Radiative Transition Rates of Molecular Transitions549

E.Space-Dependent Rate Equations553

E.1.Four-Level Lasers553

E.2.Quasi-Three-Level Lasers559

F.Mode-Locking Theory:Homogeneous Line563

F.1.Active Mode Locking563

F.2.Passive Mode Locking568

References569

G.Propagation of a Laser Pulse through a Dispersive Medium or a Gain Medium571

Reference575

H.Higher-Order Coherence577

I.Physical Constants and Useful Conversion Factors581

Answers to Selected Problems583

Index595

热门推荐