图书介绍
随机过程与排队论PDF|Epub|txt|kindle电子书版本网盘下载
![随机过程与排队论](https://www.shukui.net/cover/30/33452434.jpg)
- 何选森编著 著
- 出版社: 长沙:湖南大学出版社
- ISBN:9787811137651
- 出版时间:2010
- 标注页数:266页
- 文件大小:48MB
- 文件页数:276页
- 主题词:随机过程;排队论
PDF下载
下载说明
随机过程与排队论PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 随机过程基础1
1.1 随机过程的概念1
1.2 随机过程的数字特征2
1.3 随机过程的特征函数与母函数3
1.3.1 特征函数3
1.3.2 母函数4
1.4 随机过程的平稳性与各态历经性11
1.4.1 平稳性11
1.4.2 各态历经性13
1.5 随机过程的联合分布与互相关函数14
1.5.1 联合分布14
1.5.2 互相关函数14
1.6 随机过程的功率谱密度16
1.6.1 功率谱密度函数16
1.6.2 相关函数与功率谱密度的关系17
1.7 随机过程的微分和积分18
1.7.1 随机过程的极限与连续性18
1.7.2 随机过程的微分与积分19
1.8 复随机过程21
1.9 拉普拉斯-斯帝尔阶斯变换(L-S变换)22
1.9.1 拉普拉斯变换22
1.9.2 拉普拉斯-斯帝尔阶斯变换24
1.10 留数及其应用24
习题一28
第二章 马尔可夫链30
2.1 马尔可夫过程的概念30
2.1.1 马尔可夫过程的统计特性31
2.1.2 切普曼-柯尔莫哥洛夫(C-K)方程33
2.2 马尔可夫链的概念34
2.2.1 切普曼-柯尔莫哥洛夫方程36
2.2.2 马尔可夫链的典型例子38
2.3 马尔可夫链中状态的分类44
2.3.1 到达和相通44
2.3.2 状态空间的分解45
2.3.3 常返态和滑过态(非常返态)49
2.3.4 周期性与遍历性55
2.4 转移概率的渐近性质和平稳分布57
2.4.1 极限概率与平稳分布57
2.4.2 动态平衡原理66
2.5 非常返态的分析67
2.5.1 常返态的吸收概率68
2.5.2 从非常返态进入常返态的时间期望70
2.6 鞅过程概念72
习题二74
第三章 泊松过程79
3.1 可数状态马尔可夫过程基本概念79
3.1.1 可数状态马尔可夫过程的分布特性79
3.1.2 独立增量过程80
3.2 齐次泊松过程82
3.2.1 随机点过程与计数过程82
3.2.2 泊松过程的概念83
3.2.3 泊松过程的数字特征85
3.2.4 泊松过程是马尔可夫过程86
3.2.5 指数分布特性88
3.3 泊松过程的分布特性92
3.3.1 各次事件的时间间隔分布92
3.3.2 等待时间的分布93
3.3.3 到达时间的条件分布94
3.3.4 两个独立泊松过程事件出现时间的关系96
3.3.5 泊松过程的性质97
3.4 非齐次泊松过程100
3.5 复合泊松过程103
3.6 过滤的泊松过程105
3.6.1 电子系统中的过滤泊松过程105
3.6.2 过滤泊松过程的统计特性107
3.6.3 条件泊松过程的概念111
3.7 维纳过程113
3.7.1 从随机游动获得维纳过程114
3.7.2 规范化维纳过程115
习题三117
第四章 转移概率方程与生灭过程121
4.1 转移概率函数可微性121
4.2 跳跃强度与Q矩阵125
4.3 柯尔莫哥洛夫-费勒方程127
4.3.1 柯尔莫哥洛夫-费勒前进方程127
4.3.2 福克-普朗克方程129
4.3.3 柯尔莫哥洛夫-费勒后退方程129
4.4 转移概率的遍历性133
4.5 生灭过程137
4.5.1 纯增殖过程137
4.5.2 尤尔过程140
4.5.3 生灭过程141
4.6 更新过程152
4.6.1 更新过程152
4.6.2 更新定理155
4.6.3 年龄与剩余寿命的分布158
习题四160
第五章 基于生灭过程的排队系统165
5.1 基本概念165
5.1.1 排队系统的组成166
5.1.2 排队系统的表示170
5.1.3 排队系统的主要评价指标172
5.2 平衡状态的M/M/n系统173
5.2.1 转移概率与平稳分布173
5.2.2 平均队长与占用服务台数176
5.2.3 等待时间分布177
5.2.4 逗留时间分布179
5.3 平衡状态的M/M/1系统180
5.3.1 平均队长与占用服务台数181
5.3.2 等待时间分布182
5.3.3 逗留时间分布183
5.4 平衡状态的M/M/n/n系统184
5.5 平衡状态的M/M/∞系统185
5.6 利特尔(Little)公式186
5.7 平衡状态的M/M/n/N(n≤N)系统187
5.7.1 平稳分布188
5.7.2 队长、损失律与进入率188
5.7.3 等待与逗留时间190
5.8 M/M/n/m/m(n≤m)系统191
5.9 瞬时状态的M/M/·系统196
5.9.1 M/M/∞系统196
5.9.2 M/G/∞系统198
5.9.3 M/M/1系统202
5.10 系统忙期202
5.10.1 M/M/·系统的平均忙期202
5.10.2 M/G/1系统的忙期209
5.10.3 M/M/n系统的k阶繁忙期213
习题五215
第六章 其他排队系统220
6.1 M/Er/1系统220
6.1.1 状态转移概率221
6.1.2 队长与等待时间223
6.2 Er/M/1系统226
6.2.1 队长的分布226
6.2.2 等待时间的分布229
6.2.3 系统忙期230
6.3 批处理的M/Mr/1系统232
6.4 批到达Mk/M/1系统234
6.4.1 批顾客数k为常数234
6.4.2 批顾客数k为随机变量235
6.5 M/G/1系统236
6.5.1 系统状态转移概率237
6.5.2 队长与等待时间239
6.6 G/M/n系统242
6.6.1 转移概率242
6.6.2 队长的平稳分布244
6.6.3 等待时间的分布246
6.6.4 G/M/1系统247
6.7 G/G/1系统251
6.8 离散时间排队模型256
6.8.1 Geom/Geom/1系统257
6.8.2 Geom/Geom/n系统261
习题六262
参考文献266