图书介绍

Elements of Linear SpacesPDF|Epub|txt|kindle电子书版本网盘下载

Elements of Linear Spaces
  • A.R.Amir-Moez and A.L.Fass 著
  • 出版社: Pergamon Press
  • ISBN:
  • 出版时间:1962
  • 标注页数:149页
  • 文件大小:18MB
  • 文件页数:157页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Elements of Linear SpacesPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART Ⅰ1

1 REAL EUCLIDEAN SPACE1

1.1 Scalars and vectors1

1.2 Sums and scalar multiples of vectors1

1.3 Linear independence2

1.4 Theorem2

1.5 Theorem2

1.6 Theorem2

1.7 Base(Co-ordinate system)3

1.8 Theorem4

1.9 Inner product of two vectors5

1.10 Projection of a vector on an axis5

1.11 Theorem6

1.12 Theorem6

1.13 Theorem7

1.14 Orthonormal base7

1.15 Norm of a vector and angle between two vectors in terms of components7

1.16 Orthonormalization of a base8

1.17 Subspaces9

1.18 Straight line10

1.19 Plane11

1.20 Distance between a point and a plane12

Exercises 113

Additional Problems15

2 LINEAR TRANSFORMATIONS AND MATRICES16

2.1 Definition16

2.2 Addition and Multiplication of Transformations16

2.3 Theorem16

2.4 Matrix of a Transformation A16

2.5 Unit and zero transformation19

2.6 Addition of Mat-rices20

2.7 Product of Matrices20

2.8 Rectangular matrices21

2.9 Transform of a vector21

Exercises 223

Additional Problems25

3 DETERMINANTS AND LINEAR EQUATIONS28

3.1 Definition28

3.2 Some properties of determinants29

3.3 Theorem29

3.4 Systems of Linear equations29

Exercises 334

4 SPECIAL TRANSFORMATIONS AND THEIR MATRICES37

4.1 Inverse of a linear transformation37

4.2 A practical way of getting the inverse38

4.3 Theorem38

4.4 Adjoint of a transformation38

4.5 Theorem38

4.6 Theorem39

4.7 Theorem39

4.8 Orthogonal(Unitary)transformations39

4.9 Theorem40

4.10 Change of Base40

4.11 Theorem41

Exercises 443

Additional Problems44

5 CHARACTERISTIC EQUATION OF A TRANSFORMATION AND QUADRATIC FORMS47

5.1 Characteristic values and characteristic vectors of a transformation47

5.2 Theorem47

5.3 Definition48

5.4 Theorem48

5.5 Theorem48

5.6 Special transformations48

5.7 Change of a matrix to diagonal form49

5.8 Theorem50

5.9 Definition51

5.10 Theorem51

5.11 Quadratic forms and their reduction to canonical form52

5.12 Reduction to sum or differences of squares54

5.13 Simultaneous reduction of two quadratic forms54

Exercises 557

Additional Problems58

PART Ⅱ61

6 UNITARY SPACES61

Introduction61

6.1 Scalars,Vectors and vector spaces61

6.2 Subspaces61

6.3 Lin-ear independence61

6.4 Theorem61

6.5 Base62

6.6 Theorem62

6.7 Dimension theorem63

6.8 Inner Product63

6.9 Unitary spaces63

6.10 Definition63

6.11 Theorem63

6.12 Definition63

6.13 Theorem63

6.14 Definition64

6.15 Orthonormalization of a set of vectors64

6.16 Orthonormal base64

6.17 Theorem64

Exercises 665

7 LINEAR TRANSFORMATIONS,MATRICES AND DETERMINANTS67

7.1 Definition67

7.2 Matrix of a Transfotmation A67

7.3 Addition and Multiplication of Matrices67

7.4 Rectangular matrices68

7.5 Determinants68

7.6 Rank of a matrix69

7.7 Systems of linear equations70

7.8 Inverse of a linear transformation72

7.9 Adjoint of a transformation73

7.10 Unitary Transformation73

7.11 Change of Base74

7.12 Characteristic values and Characteristic vectors of a transformation74

7.13 Definition74

7.14 Theorem75

7.15 Theorem75

Exercises 776

8 QUADRATIC FORMS AND APPLICATION TO GEOMETRY79

8.1 Definition79

8.2 Reduction of a quadratic form to canonical form79

8.3 Reduction to Sum or difference of squares80

8.4 Simultaneous reduction of two quadratic forms80

8.5 Homogeneous Coordinates80

8.6 Change of coordinate system80

8.7 Invariance of rank81

8.8 Second degree curves82

8.9 Second degree Surfaces84

8.10 Direction numbers and equations of straight lines and planes89

8.11 Intersection of a straight line and a quadric89

8.12 Theorem90

8.13 A center of a quadric91

8.14 Tangent plane to a quadric92

8.15 Ruled surfaces93

8.16 Theorem95

Exercises 896

Additional Problems97

9 APPLICATIONS AND PROBLEM SOLVING TECHNIQUES100

9.1 A general projection100

9.2 Intersection of planes100

9.3 Sphere101

9.4 A property of the sphere101

9.5 Radical axis102

9.6 Principal planes103

9.7 Central quadric104

9.8 Quadric of rank 2105

9.9 Quadric of rank 1106

9.10 Axis of rotation107

9.11 Identification of a quadric107

9.12 Rulings108

9.13 Locus problems108

9.14 Curves in space109

9.15 Pole and polar110

Exercises 9111

PART Ⅲ115

10 SOME ALGEBRAIC STRUCTURES115

Introduction115

10.1 Definition115

10.2 Groups115

10.3 Theorem115

10.4 Corollary115

10.5 Fields115

10.6 Examples116

10.7 Vector spaces116

10.8 Subspaces116

10.9 Examples of vector spaces116

10.10 Linear independence117

10.11 Base117

10.12 Theorem117

10.13 Corollary117

10.14 Theorem117

10.15 Theorem118

10.16 Unitary spaces118

10.17 Theorem119

10.18 Orthogonality120

10.19 Theorem120

10.2l Orthogonal complement of a subspace121

Exercises 10121

11 LINEAR TRANSFORMATIONS IN GENERAL VECTOR SPACES123

11.1 Definitions123

11.2 Space of linear transformations123

11.3 Algebra of linear transformations123

11.4 Finite-dimensional vector spaces124

11.5 Rectangular matrices124

11.6 Rank and range of a transformation124

11.7 Null space and nullity125

11.8 Trans-form of a vector125

11.9 Inverse of a transformation125

11.10 Change of base126

11.11 Characteristic equation of a transformation126

11.12 Cayley-Hamilton Theorem126

11.13 Unitary spaces and special transformations127

11.14 Complementary subspaces128

11.15 Projections128

11.16 Algebra of projections128

11.17 Matrix of a projection129

11.18 Perpendicular projection129

11.19 Decomposition of Hermitian transformations129

Exercises 11130

12 SINGULAR VALUES AND ESTIMATES OF PROPER VALUES OF MATRICES132

12.1 Proper values of a matrix132

12.2 Theorem132

12.3 Cartesian decomposition of a linear transformation133

12.4 Singular values of a transformation134

12.5 Theorem134

12.6 Theorem135

12.7 Theorem135

12.8 Theorem135

12.9 Theorem136

12.10 Lemma136

12.11 Theorem137

12.12 The space of n-by-n matrices137

12.13 Hilbert norm137

12.14 Frobenius norm138

12.15 Theorem138

12.16 Theorem139

12.17 Theorem141

Exercises 12141

APPENDIX143

1.The plane143

2.Comparison of a line and a plane143

3.Two planes144

4.Linesand planes144

5.Skew lines145

6.Projection onto a plane145

Index147

热门推荐