图书介绍
Elements of Linear SpacesPDF|Epub|txt|kindle电子书版本网盘下载
![Elements of Linear Spaces](https://www.shukui.net/cover/57/33533970.jpg)
- A.R.Amir-Moez and A.L.Fass 著
- 出版社: Pergamon Press
- ISBN:
- 出版时间:1962
- 标注页数:149页
- 文件大小:18MB
- 文件页数:157页
- 主题词:
PDF下载
下载说明
Elements of Linear SpacesPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ1
1 REAL EUCLIDEAN SPACE1
1.1 Scalars and vectors1
1.2 Sums and scalar multiples of vectors1
1.3 Linear independence2
1.4 Theorem2
1.5 Theorem2
1.6 Theorem2
1.7 Base(Co-ordinate system)3
1.8 Theorem4
1.9 Inner product of two vectors5
1.10 Projection of a vector on an axis5
1.11 Theorem6
1.12 Theorem6
1.13 Theorem7
1.14 Orthonormal base7
1.15 Norm of a vector and angle between two vectors in terms of components7
1.16 Orthonormalization of a base8
1.17 Subspaces9
1.18 Straight line10
1.19 Plane11
1.20 Distance between a point and a plane12
Exercises 113
Additional Problems15
2 LINEAR TRANSFORMATIONS AND MATRICES16
2.1 Definition16
2.2 Addition and Multiplication of Transformations16
2.3 Theorem16
2.4 Matrix of a Transformation A16
2.5 Unit and zero transformation19
2.6 Addition of Mat-rices20
2.7 Product of Matrices20
2.8 Rectangular matrices21
2.9 Transform of a vector21
Exercises 223
Additional Problems25
3 DETERMINANTS AND LINEAR EQUATIONS28
3.1 Definition28
3.2 Some properties of determinants29
3.3 Theorem29
3.4 Systems of Linear equations29
Exercises 334
4 SPECIAL TRANSFORMATIONS AND THEIR MATRICES37
4.1 Inverse of a linear transformation37
4.2 A practical way of getting the inverse38
4.3 Theorem38
4.4 Adjoint of a transformation38
4.5 Theorem38
4.6 Theorem39
4.7 Theorem39
4.8 Orthogonal(Unitary)transformations39
4.9 Theorem40
4.10 Change of Base40
4.11 Theorem41
Exercises 443
Additional Problems44
5 CHARACTERISTIC EQUATION OF A TRANSFORMATION AND QUADRATIC FORMS47
5.1 Characteristic values and characteristic vectors of a transformation47
5.2 Theorem47
5.3 Definition48
5.4 Theorem48
5.5 Theorem48
5.6 Special transformations48
5.7 Change of a matrix to diagonal form49
5.8 Theorem50
5.9 Definition51
5.10 Theorem51
5.11 Quadratic forms and their reduction to canonical form52
5.12 Reduction to sum or differences of squares54
5.13 Simultaneous reduction of two quadratic forms54
Exercises 557
Additional Problems58
PART Ⅱ61
6 UNITARY SPACES61
Introduction61
6.1 Scalars,Vectors and vector spaces61
6.2 Subspaces61
6.3 Lin-ear independence61
6.4 Theorem61
6.5 Base62
6.6 Theorem62
6.7 Dimension theorem63
6.8 Inner Product63
6.9 Unitary spaces63
6.10 Definition63
6.11 Theorem63
6.12 Definition63
6.13 Theorem63
6.14 Definition64
6.15 Orthonormalization of a set of vectors64
6.16 Orthonormal base64
6.17 Theorem64
Exercises 665
7 LINEAR TRANSFORMATIONS,MATRICES AND DETERMINANTS67
7.1 Definition67
7.2 Matrix of a Transfotmation A67
7.3 Addition and Multiplication of Matrices67
7.4 Rectangular matrices68
7.5 Determinants68
7.6 Rank of a matrix69
7.7 Systems of linear equations70
7.8 Inverse of a linear transformation72
7.9 Adjoint of a transformation73
7.10 Unitary Transformation73
7.11 Change of Base74
7.12 Characteristic values and Characteristic vectors of a transformation74
7.13 Definition74
7.14 Theorem75
7.15 Theorem75
Exercises 776
8 QUADRATIC FORMS AND APPLICATION TO GEOMETRY79
8.1 Definition79
8.2 Reduction of a quadratic form to canonical form79
8.3 Reduction to Sum or difference of squares80
8.4 Simultaneous reduction of two quadratic forms80
8.5 Homogeneous Coordinates80
8.6 Change of coordinate system80
8.7 Invariance of rank81
8.8 Second degree curves82
8.9 Second degree Surfaces84
8.10 Direction numbers and equations of straight lines and planes89
8.11 Intersection of a straight line and a quadric89
8.12 Theorem90
8.13 A center of a quadric91
8.14 Tangent plane to a quadric92
8.15 Ruled surfaces93
8.16 Theorem95
Exercises 896
Additional Problems97
9 APPLICATIONS AND PROBLEM SOLVING TECHNIQUES100
9.1 A general projection100
9.2 Intersection of planes100
9.3 Sphere101
9.4 A property of the sphere101
9.5 Radical axis102
9.6 Principal planes103
9.7 Central quadric104
9.8 Quadric of rank 2105
9.9 Quadric of rank 1106
9.10 Axis of rotation107
9.11 Identification of a quadric107
9.12 Rulings108
9.13 Locus problems108
9.14 Curves in space109
9.15 Pole and polar110
Exercises 9111
PART Ⅲ115
10 SOME ALGEBRAIC STRUCTURES115
Introduction115
10.1 Definition115
10.2 Groups115
10.3 Theorem115
10.4 Corollary115
10.5 Fields115
10.6 Examples116
10.7 Vector spaces116
10.8 Subspaces116
10.9 Examples of vector spaces116
10.10 Linear independence117
10.11 Base117
10.12 Theorem117
10.13 Corollary117
10.14 Theorem117
10.15 Theorem118
10.16 Unitary spaces118
10.17 Theorem119
10.18 Orthogonality120
10.19 Theorem120
10.2l Orthogonal complement of a subspace121
Exercises 10121
11 LINEAR TRANSFORMATIONS IN GENERAL VECTOR SPACES123
11.1 Definitions123
11.2 Space of linear transformations123
11.3 Algebra of linear transformations123
11.4 Finite-dimensional vector spaces124
11.5 Rectangular matrices124
11.6 Rank and range of a transformation124
11.7 Null space and nullity125
11.8 Trans-form of a vector125
11.9 Inverse of a transformation125
11.10 Change of base126
11.11 Characteristic equation of a transformation126
11.12 Cayley-Hamilton Theorem126
11.13 Unitary spaces and special transformations127
11.14 Complementary subspaces128
11.15 Projections128
11.16 Algebra of projections128
11.17 Matrix of a projection129
11.18 Perpendicular projection129
11.19 Decomposition of Hermitian transformations129
Exercises 11130
12 SINGULAR VALUES AND ESTIMATES OF PROPER VALUES OF MATRICES132
12.1 Proper values of a matrix132
12.2 Theorem132
12.3 Cartesian decomposition of a linear transformation133
12.4 Singular values of a transformation134
12.5 Theorem134
12.6 Theorem135
12.7 Theorem135
12.8 Theorem135
12.9 Theorem136
12.10 Lemma136
12.11 Theorem137
12.12 The space of n-by-n matrices137
12.13 Hilbert norm137
12.14 Frobenius norm138
12.15 Theorem138
12.16 Theorem139
12.17 Theorem141
Exercises 12141
APPENDIX143
1.The plane143
2.Comparison of a line and a plane143
3.Two planes144
4.Linesand planes144
5.Skew lines145
6.Projection onto a plane145
Index147