图书介绍
信号处理的小波导引 英文PDF|Epub|txt|kindle电子书版本网盘下载
![信号处理的小波导引 英文](https://www.shukui.net/cover/75/34377162.jpg)
- (法)马拉特(Mallat 著
- 出版社: 北京:机械工业出版社
- ISBN:7111127684
- 出版时间:2003
- 标注页数:637页
- 文件大小:38MB
- 文件页数:660页
- 主题词:
PDF下载
下载说明
信号处理的小波导引 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ INTRODUCTION TO A TRANSIENT WORLD2
1.1 Fourier Kingdom2
1.2 Time-Frequency Wedding2
1.2.1 Windowed Fourier Transform3
1.2.2 Wavelet Transform4
1.3 Bases of Time-Frequency Atoms6
1.3.1 Wavelet Bases and Filter Banks7
1.3.2 Tilings of Wavelet Packet and Local Cosine Bases9
1.4 Bases for What?11
1.4.1 Approximation12
1.4.2 Estimation14
1.4.3 Compression16
1.5.1 Reproducible Computational Science17
1.5 Travel Guide17
1.5.2 Road Map18
Ⅱ FOURIER KINGDOM20
2.1 Linear Time-Invariant Filtering120
2.1.1 Impulse Response21
2.1.2 Transfer Functions22
2.2 Fourier Integrals122
2.2.1 Fourier Transform in L1(R)23
2.2.2 Fourier Transform in L2(R)25
2.2.3 Examples27
2.3 Properties129
2.3.1 Regularity and Decay29
2.3.2 Uncertainty Principle30
2.3.3 Total Variation33
2.4 Two-Dimensional Fourier Transform138
2.5 Problems40
Ⅲ DISCRETE REVOLUTION42
3.1 Sampling Analog Signals142
3.1.1 Whittaker Sampling Theorem43
3.1.2 Aliasing44
3.1.3 General Sampling Theorems47
3.2 Discrete Time-Invariant Filters149
3.2.1 Impulse Response and Transfer Function49
3.2.2 Fourier Series51
3.3 Finite Signals154
3.3.1 Circular Convolutions55
3.3.2 Discrete Fourier Transform55
3.3.3 Fast Fourier Transform57
3.3.4 Fast Convolutions58
3.4 Discrete Image Processing159
3.4.1 Two-Dimensional Sampling Theorem60
3.4.2 Discrete Image Filtering61
3.4.3 Circular Convolutions and Fourier Basis62
3.5 Problems64
Ⅳ TIME MEETS FREQUENCY67
4.1 Time-Frequency Atoms167
4.2 Windowed Fourier Transform169
4.2.1 Completeness and Stability72
4.2.2 Choice of Window275
4.2.3 Discrete Windowed Fourier Transform277
4.3 Wavelet Transforms179
4.3.1 Real Wavelets80
4.3.2 Analytic Wavelets84
4.3.3 Discrete Wavelets289
4.4 Instantaneous Frequency291
4.4.1 Windowed Fourier Ridges94
4.4.2 Wavelet Ridges102
4.5 Quadratic Time-Frequency Energy1107
4.5.1 Wigner-Ville Distribution107
4.5.2 Interferences and Positivity112
4.5.3 Cohen s Class2116
4.5.4 Discrete Wigner-Ville Computations2120
4.6 Problems121
Ⅴ FRAMES125
5.1 Frame Theory2125
5.1.1 Frame Definition and Sampling125
5.1.2 Pseudo Inverse127
5.1.3 Inverse Frame Computations132
5.1.4 Frame Projector and Noise Reduction135
5.2 Windowed Fourier Frames2138
5.3 Wavelet Frames2143
5.4 Translation Invariance1146
5.5 Dyadic Wavelet Transform2148
5.5.1 Wavelet Design150
5.5.2 Algorithme ? Trous153
5.5.3 Oriented Wavelets for a Vision3156
5.6 Problems160
Ⅵ WAVELET ZOOM163
6.1 Lipschitz Regularity1163
6.1.1 Lipschitz Definition and Fourier Analysis164
6.1.2 Wavelet Vanishing Moments166
6.1.3 Regularity Measurements with Wavelets169
6.2.1 Detection of Singularities176
6.2 Wavelet Transform Modulus Maxima2176
6.2.2 Reconstruction From Dyadic Maxima3183
6.3 Multiscale Edge Detection2189
6.3.1 Wavelet Maxima for Images2189
6.3.2 Fast Multiscale Edge Computations3197
6.4 Multifractals2200
6.4.1 Fractal Sets and Self-Similar Functions200
6.4.2 Singularity Spectrum3205
6.4.3 Fractal Noises3211
6.5 Problems216
Ⅶ WAVELET BASES220
7.1 Orthogonal Wavelet Bases1220
7.1.1 Multiresolution Approximations221
7.1.2 Scaling Function224
7.1.3 Conjugate Mirror Filters228
7.1.4 In Which Orthogonal Wavelets Finally Arrive235
7.2 Classes of Wavelet Bases1241
7.2.1 Choosing a Wavelet241
7.2.2 Shannon, Meyer and Battle-Lemarié Wavelets246
7.2.3 Daubechies Compactly Supported Wavelets249
7.3 Wavelets and Filter Banks1255
7.3.1 Fast Orthogonal Wavelet Transform255
7.3.2 Perfect Reconstruction Filter Banks259
7.3.3 Biorthogonal Bases of 12(Z)2263
7.4 Biorthogonal Wavelet Bases2265
7.4.1 Construction of Biorthogonal Wavelet Bases265
7.4.2 Biorthogonal Wavelet Design2268
7.4.3 Compactly Supported Biorthogonal Wavelets2270
7.4.4 Lifting Wavelets3273
7.5 Wavelet Bases on an Interval2281
7.5.1 Periodic Wavelets282
7.5.2 Folded Wavelets284
7.5.3 Boundary Wavelets3286
7.6 Multiscale Interpolations2293
7.6.1 Interpolation and Sampling Theorems293
7.6.2 Interpolation Wavelet Basis3299
7.7 Separable Wavelet Bases1303
7.7.1 Separable Multiresolutions304
7.7.2 Two-Dimensional Wavelet Bases306
7.7.3 Fast Two-Dimensional Wavelet Transform310
7.7.4 Wavelet Bases in Higher Dimensions2313
7.8 Problems314
8.1.1 Wavelet Packet Tree322
8.1 Wavelet Packets2322
Ⅷ WAVELET PACKET AND LOCAL COSINE BASES322
8.1.2 Time-Frequency Localization327
8.1.3 Particular Wavelet Packet Bases333
8.1.4 Wavelet Packet Filter Banks336
8.2 Image Wavelet Packets2339
8.2.1 Wavelet Packet Quad-Tree339
8.2.2 Separable Filter Banks341
8.3 Block Transforms1343
8.3.1 Block Bases344
8.3.2 Cosine Bases346
8.3.3 Discrete Cosine Bases349
8.3.4 Fast Discrete Cosine Transforms2350
8.4 Lapped Orthogonal Transforms2353
8.4.1 Lapped Projectors353
8.4.2 Lapped Orthogonal Bases359
8.4.3 Local Cosine Bases361
8.4.4 Discrete Lapped Transforms364
8.5 Local Cosine Trees2368
8.5.1 Binary Tree of Cosine Bases369
8.5.2 Tree of Discrete Bases371
8.5.3 Image Cosine Quad-Tree372
8.6 Problems374
Ⅸ AN APPROXIMATION TOUR377
9.1 Linear Approximations1377
9.1.1 Linear Approximation Error377
9.1.2 Linear Fourier Approximations378
9.1.3 Linear Multiresolution Approximations382
9.1.4 Karhunen-Loève Approximations2385
9.2.1 Non-Linear Approximation Error389
9.2 Non-Linear Approximations1389
9.2.2 Wavelet Adaptive Grids391
9.2.3 Besov Spaces3394
9.3 Image Approximations with Wavelets1398
9.4 Adaptive Basis Selection2405
9.4.1 Best Basis and Schur Concavity406
9.4.2 Fast Best Basis Search in Trees411
9.4.3 Wavelet Packet and Local Cosine Best Bases413
9.5 Approximations with Pursuits3417
9.5.1 Basis Pursuit418
9.5.2 Matching Pursuit421
9.5.3 Orthogonal Matching Pursuit428
9.6 Problems430
10.1.1 Bayes Estimation435
10.1 Bayes Versus Minimax2435
Ⅹ ESTIMATIONS ARE APPROXIMATIONS435
10.1.2 Minimax Estimation442
10.2 Diagonal Estimation in a Basis2446
10.2.1 Diagonal Estimation with Oracles446
10.2.2 Thresholding Estimation450
10.2.3 Thresholding Refinements3455
10.2.4 Wavelet Thresholding458
10.2.5 Best Basis Thresholding3466
10.3 Minimax Optimality3469
10.3.1 Linear Diagonal Minimax Estimation469
10.3.2 Orthosymmetric Sets474
10.3.3 Nearly Minimax with Wavelets479
10.4.1 Estimation in Arbitrary Gaussian Noise486
10.4 Restoration3486
10.4.2 Inverse Problems and Deconvolution491
10.5 Coherent Estimation3501
10.5.1 Coherent Basis Thresholding502
10.5.2 Coherent Matching Pursuit505
10.6 Spectrum Estimation2507
10.6.1 Power Spectrum508
10.6.2 Approximate Karhunen-Loève Search3512
10.6.3 Locally Stationary Processes3516
10.7 Problems520
Ⅺ TRANSFORM CODING526
11.1 Signal Compression2526
11.1.1 State of the Art526
11.1.2 Compression in Orthonormal Bases527
11.2 Distortion Rate of Quantization2528
11.2.1 Entropy Coding529
11.2.2 Scalar Quantization537
11.3 High Bit Rate Compression2540
11.3.1 Bit Allocation540
11.3.2 Optimal Basis and Karhunen-Loève542
11.3.3 Transparent Audio Code544
11.4 Image Compression2548
11.4.1 Deterministic Distortion Rate548
11.4.2 Wavelet Image Coding557
11.4.3 Block Cosine Image Coding561
11.4.4 Embedded Transform Coding566
11.4.5 Minimax Distortion Rate3571
11.5 Video Signals2577
11.5.1 Optical Flow577
11.5.2 MPEG Video Compression585
11.6 Problems587
Appendix A MATHEMATICAL COMPLEMENTS591
A.1 Functions and Integration591
A.2 Banach and Hilbert Spaces593
A.3 Bases of Hilbert Spaces595
A.4 Linear Operators596
A.5 Separable Spaces and Bases598
A.6 Random Vectors and Covariance Operators599
A.7 Diracs601
Appendix B SOFTWARE TOOLBOXES603
B.1 WAVELAB603
8.2 LASTWAVE609
B.3 Freeware Wavelet Toolboxes610
BIBLIOGRAPHY612
INDEX629