图书介绍
空间解析几何引论 第2版PDF|Epub|txt|kindle电子书版本网盘下载
- 南开大学《空间解析几何引论》编写组编 著
- 出版社: 北京:高等教育出版社
- ISBN:7040021080
- 出版时间:1978
- 标注页数:418页
- 文件大小:10MB
- 文件页数:434页
- 主题词:
PDF下载
下载说明
空间解析几何引论 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 矢量及其线性运算1
1 矢量概念1
2 矢量线性运算3
2.1 矢量加法及其运算规律3
2.2 数量乘矢量及其运算规律5
3 矢量的线性关系9
3.1 矢量的线性组合9
3.2 矢量的线性关系11
4 平行投影 有向直线 直线上矢量的代数长14
4.1 平行投影14
4.2 有向直线15
4.3 直线上矢量的代数长16
结束语17
第二章 仿射坐标系 直线和平面18
1 空间仿射坐标系18
1.1 空间仿射坐标系的建立18
1.2 矢量的分量(或坐标)19
1.3 点的坐标21
1.4 平行投影与仿射坐标系22
1.5 图和例24
2 直线27
2.1 直线方程27
2.2 矢量的定比分割31
2.3 两直线的相对位置32
3 平面35
3.1 平面的参数方程35
3.2 平面的普遍方程36
3.3 三元一次多项式的符号41
3.4 矢量与平面平行的条件42
3.5 两平面的相对位置43
3.6 对于坐标系有特殊位置的平面45
4 直线和平面间的关系49
4.1 直线与平面的相对位置49
4.2 平面束 平面把 直线把49
4.3 三个平面的相对位置53
结束语60
第三章 矢量的数积和矢积 直角坐标系下的直线和平面62
1 数积62
1.1 矢量数积的定义62
1.2 数积运算规律63
2 矢积68
2.1 两矢矢积的定义和推论68
2.2 矢积运算规律68
3 三矢混合积73
4 三矢矢积 拉格朗日恒等式76
4.1 三矢矢积76
4.2 拉格朗日恒等式78
5.1 坐标系的建立80
5 空间直角坐标系80
5.2 对称点 正投影81
5.3 矢量运算在直角坐标系下的表示式81
5.4 直角坐标系作图法85
6 角度 距离87
6.1 方向角 方向余弦 方向系数87
6.2 平面的法矢87
6.3 角度88
6.4 距离89
7.1 平面法方程94
7 平面法方程94
7.2 化普遍方程为法方程96
7.3 平面到点的有向距离97
结束语99
第四章 几种常见的曲面101
1 柱面101
1.1 几种二阶柱面101
1.2 一般柱面106
2 锥面109
2.1 圆锥面110
2.2 一般锥面111
3 回转面119
4 椭圆面125
5 双曲面131
5.1 单叶双曲面131
5.2 双叶双曲面134
6 二阶锥面136
6.1 二阶锥面的标准方程136
6.2 二阶锥面作为双曲面的渐近锥面137
7 抛物面138
7.1 椭圆抛物面138
7.2 双曲抛物面140
8.1 单叶双曲面作为二阶直纹面143
8 二阶直纹面143
8.2 双曲抛物面作为二阶直纹面147
9 曲面和曲线的表示法153
9.1 关于曲面和曲线方程的一般概念153
9.2 曲面和曲线的参数方程155
9.3 由曲线产生的曲面158
结束语163
第五章 坐标变换与线性变换164
1 矩阵165
1.1 矩阵的定义165
1.2 矩阵的乘法166
1.3 矩阵乘法的结合律169
2.1 底矢变换172
2 仿射坐标变换172
2.2 矢的分量变换175
2.3 点的坐标变换176
3 直角坐标变换185
3.1 底矢变换185
3.2 矢的分量变换188
3.3 点的坐标变换189
4 齐次线性变换199
4.1 齐次线性变换乘法200
4.2 逆变换202
4.3 变换群 齐次线性变换群 齐次正交变换群204
5 线性变换214
5.1 线性变换乘法215
5.2 满秩线性变换的逆变换216
5.3 线性变换群与正交变换群217
结束语219
第六章 仿射和直角坐标系下的二阶曲面221
前言221
1 二阶曲面和直线的交点225
2 在仿射坐标系下,对二阶曲面的考察227
2.1 切线,切面和极面,奇点227
2.2 切锥面和切柱面232
2.3 渐近方向和中心233
2.4 共轭直径面和奇向239
2.5 共轭方向和共轭直径243
3 二阶曲面的仿射标准方程250
3.1 中心曲面(r=3)250
3.2 r=2的无心曲面252
3.3 (r=2的)线心曲面253
3.4 r=1的无心曲面254
3.5 (r=1的)面心曲面256
4 在直角坐标系下,对二阶曲面的考察260
4.1 主方向和主直径261
4.2 (正交)不变量和半不变量264
4.3 互相垂直又互相共轭的主方向271
5 二阶曲面的(度量)标准方程276
5.1 中心曲面(r=3)277
5.2 r=2的无心曲面278
5.3 (r=2的)线心曲面279
5.4 r=1的无心曲面281
5.5 (r=1的)面心曲面281
结束语287
第七章 欧氏几何与仿射几何291
1 刚体运动292
1.1 刚体运动的变换公式293
1.2 刚体运动的分解294
2.2 等距变换297
2.1 反射297
2 等距变换 欧氏几何297
2.3 图形的等价与分类300
2.4 二阶曲面的度量分类300
3 仿射变换301
4 仿射几何305
5 仿射变换的分解309
6 二阶曲面的仿射分类313
结束语314
第八章 射影几何简介317
1 扩大空间与射影空间317
1.1 扩大直线与射影直线317
1.2 扩大平面与射影平面319
1.3 扩大空间与射影空间321
2 对偶原则326
2.1 结合关系326
2.2 对偶原则328
3 射影坐标与射影坐标变换338
3.1 直线上的射影坐标338
3.2 空间的射影坐标339
3.3 射影坐标变换341
4 射影变换与射影几何346
4.1 射影变换与射影群346
4.2 射影性质与射影几何349
4.3 关于射影变换的基本定理351
5 交比354
5.1 直线上的交比354
5.2 面束和线束中的交比359
5.3 交比作为射影不变量360
5.4 经过投影截影交比的不变性361
5.5 欧氏空间中交比的几何意义364
5.6 调和比366
6 二阶曲面376
6.1 有关二阶曲面的若干射影概念377
6.2 扩大空间二阶曲面和无穷远元素的关系383
6.3 从扩大空间看二阶曲面的仿射分类385
6.4 无穷远圆388
6.5 二阶曲面的射影分类389
7 从复空间二阶曲面的射影分类谈起395
结束语398
1.关于变换群与几何学398
2.关于对偶原则399
3.关于二阶曲面400
4.关于两个二阶曲面的交线401
5.关于直线坐标403
6.关于欧氏几何与非欧几何404
7.关于射影几何基础与n维射影几何406
名词索引409