图书介绍
统计决策理论中的渐近方法 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![统计决策理论中的渐近方法 英文版](https://www.shukui.net/cover/42/30415535.jpg)
- (美)L.勒卡姆著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7519220796
- 出版时间:2016
- 标注页数:742页
- 文件大小:124MB
- 文件页数:769页
- 主题词:统计决策理论-研究-英文
PDF下载
下载说明
统计决策理论中的渐近方法 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Experiments—Decision Spaces1
1 Introduction1
2 Vector Lattices—L-Spaces—Transitions3
3 Experiments—Decision Procedures5
4 A Basic Density Theorem6
5 Building Experiments from Other Ones10
6 Representations—Markov Kernels11
CHAPTER 2 Some Results from Decision Theory:Deficiencies16
1 Introduction16
2 Characterization of the Spaces of Risk Functions:Minimax Theorem16
3 Deficiencies;Distances18
4 The Form of Bayes Risks—Choquet Lattices23
CHAPTER 3 Likelihood Ratios and Conical Measures29
1 Introduction29
2 Homogeneous Functions of Measures30
3 Deficiencies for Binary Experiments:Isometries34
4 Weak Convergence of Experiments37
5 Boundedly Complete Experiments40
6 Convolutions:Hellinger Transforms42
7 The Blackwell-Sherman-Stein Theorem43
CHAPTER 4 Some Basic Inequalities46
1 Introduction46
2 Hellinger Distances:L1-Norm46
3 Approximation Properties for Likelihood Ratios49
4 Inequalities for Conditional Distributions52
CHAPTER 5 Sufficiency and Insufficiency57
1 Introduction57
2 Projections and Conditional Expectations58
3 Equivalent Definitions for Sufficiency62
4 Insufficiency67
5 Estimating Conditional Distributions73
CHAPTER 6 Domination,Compactness,Contiguity81
1 Introduction81
2 Definitions and Elementary Relations81
3 Contiguity84
4 Strong Compactness and a Result of D.Lindae92
CHAPTER 7 Some Limit Theorems96
1 Introduction96
2 Convergence in Distribution or in Probability97
3 Distinguished Sequences of Statistics99
4 Lower-Semicontinuity for Spaces of Risk Functions108
5 A Result on Asymptotic Admissibility112
CHAPTER 8 Invariance Properties118
1 Introduction118
2 The Markov-Kakutani Fixed Point Theorem119
3 A Lifting Theorem and Some Applications125
4 Automatic Invariance of Limits132
5 Invariant Exponential Families144
6 The Hunt-Stein Theorem and Related Results151
CHAPTER 9 Infinitely Divisible,Gaussian,and Poisson Experiments154
1 Introduction154
2 Infinite Divisibility154
3 Gaussian Experiments155
4 Poisson Experiments159
5 A Central Limit Theorem165
CHAPTER 10 Asymptotically Gaussian Experiments:Local Theory172
1 Introduction172
2 Convergence to a Gaussian Shift Experiment173
3 A Framework which Arises in Many Applications179
4 Weak Convergence of Distributions184
5 An Application of a Martingale Limit Theorem187
6 Asymptotic Admissibility and Minimaxity195
CHAPTER 11 Asymptotic Normality—Global206
1 Introduction206
2 Preliminary Explanations208
3 Construction of Centering Variables213
4 Definitions Relative to Quadratic Approximations219
5 Asymptotic Properties of the Centerings ?225
6 The Asymptotically Gaussian Case238
7 Some Particular Cases268
8 Reduction to the Gaussian Case by Small Distortions283
9 The Standard Tests and Confidence Sets293
10 Minimum x2 and Relatives305
CHAPTER 12 Posterior Distributions and Bayes Solutions324
1 Introduction324
2 Inequalities on Conditional Distributions325
3 Asymptotic Behavior of Bayes Procedures330
4 Approximately Gaussian Posterior Distributions336
CHAPTER 13 An Approximation Theorem for Certain Sequential Experiments346
1 Introduction346
2 Notations and Assumptions347
3 Basic Auxiliary Lemmas350
4 Reduction Theorems354
5 Remarks on Possible Applications362
CHAPTER 14 Approximation by Exponential Families370
1 Introduction370
2 A Lemma on Approximate Sufficiency371
3 Homogeneous Experiments of Finite Rank377
4 Approximation by Experiments of Finite Rank387
5 Construction of Distinguished Sequences of Estimates391
CHAPTER 15 Sums of Independent Random Variables399
1 Introduction399
2 Concentration Inequalities401
3 Compactness and Shift-Compactness419
4 Poisson Exponentials and Approximation Theorems423
5 Limit Theorems and Related Results434
6 Sums of Independent Stochastic Processes444
CHAPTER 16 Independent Observations457
1 Introduction457
2 Limiting Distributions for Likelihood Ratios458
3 Conditions for Asymptotic Normality468
4 Tests and Distances475
5 Estimates for Finite Dimensional Parameter Spaces493
6 The Risk of Formal Bayes Procedures509
7 Empirical Measures and Cumulatives529
8 Empirical Measures on Vapnik-?ervonenkis Classes541
CHAPTER 17 Independent Identically Distributed Observations555
1 Introduction555
2 Hilbert Spaces Around a Point556
3 A Special Role for ? Differentiability in Quadratic Mean573
4 Asymptotic Normality for Rates Other than ?590
5 Existence of Consistent Estimates594
6 Estimates Converging at the ?- Rate604
7 The Behavior of Posterior Distributions614
8 Maximum Likelihood621
9 Some Cases where the Number of Observations Is Random625
Appendix:Results from Classical Analysis634
1 The Language of Set Theory634
2 Topological Spaces638
3 Uniform Spaces640
4 Metric Spaces641
5 Spaces of Functions643
6 Vector Spaces645
7 Vector Lattices650
8 Vector Lattices Arising from Experiments657
9 Lattices of Numerical Functions672
10 Extensions of Positive Linear Functions677
11 Smooth Linear Functionals697
12 Derivatives and Tangents707
Bibliography727
Index737