图书介绍

量子化学 基本原理和从头计算法 第2版PDF|Epub|txt|kindle电子书版本网盘下载

量子化学 基本原理和从头计算法 第2版
  • 徐光宪,黎乐民,王德民编著 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030220394
  • 出版时间:2009
  • 标注页数:585页
  • 文件大小:22MB
  • 文件页数:600页
  • 主题词:量子化学-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

量子化学 基本原理和从头计算法 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第9章 量子化学积分(一) Slater函数1

9.1 引言3

9.2 正交曲线坐标系4

9.2.1 矢量微分算符4

9.2.2 Laplace算符?2在球坐标系的表达式5

9.2.3 广义坐标系9

9.2.4 Laplace算符在正交广义坐标系的表达式12

9.2.5 椭圆坐标系13

9.2.6 圆柱坐标系中的?216

9.3 1/r12的展开式16

9.3.1 1/r12在球坐标系的展开式16

9.3.2 1/r12在椭圆坐标系中的展开式(Neumann展开)21

9.4 某些有用的定积分22

9.4.1 An和Bn积分22

9.4.2 Cn、Dn、Fn和Gn积分23

9.4.3 S?(p,q,n)函数24

9.5 单中心积分25

9.5.1 动能积分25

9.5.2 电子-核吸引能积分28

9.5.3 单中心电子-电子相互作用能积分28

9.6 双中心积分36

9.6.1 重叠积分36

9.6.2 动能积分40

9.6.3 电子-核吸引能积分41

9.6.4 电子-电子相互作用能积分41

参考文献43

习题43

第10章 量子化学积分(二) Gauss函数47

10.1 Gauss函数49

10.1.1 未归一化的Gauss函数(GTO)49

10.1.2 归一化GTO50

10.2 用GTO拟合STO50

10.2.1 STO指数标准化51

10.2.2 用GTO拟合标准化STO51

10.2.3 用GTO拟合非标准化STO52

10.3 г函数及有关定积分54

10.3.1 г函数54

10.3.2 半整数г函数——包含exp(-ax2)的积分55

10.3.3 包含exp(-ax2-bx)的积分57

10.4 GTO乘积定理58

10.4.1 ls型乘积定理58

10.4.2 广义GTO乘积定理60

10.5 GTO的归一化60

10.6 重叠积分61

10.6.1 ls型重叠积分〈arA|brB〉的求值61

10.6.2 重叠积分的一般公式62

10.6.3 归一化GTO的重叠积分64

10.7 动能积分65

10.7.1 GTO的微商65

10.7.2 动能积分公式65

10.7.3 动能积分特例66

10.8 不完全г函数Fm(w)67

10.8.1 定义67

10.8.2 递推关系67

10.8.3 Fm(w)的幂级数形式68

10.8.4 Fm(w)的Padé近似表示式69

10.8.5 Fm(w)的微商公式70

10.9 ls型电子-核吸引能积分71

10.10 ls型电子排斥能积分73

10.11 广义GTO的势能积分77

10.11.1 广义GTO的递推公式77

10.11.2 电子-核吸引能积分78

10.11.3 电子排斥能积分79

参考文献80

习题80

第11章 原子结构的多重态理论83

11.1 全同粒子体系的交换对称性和Pauli原理85

11.1.1 量子力学的多体问题85

11.1.2 全同粒子的交换对称性85

11.1.3 体系状态的对称性守恒,Pauli原理86

11.1.4 轨道近似,Slater行列式87

11.2 多电子原子的结构89

11.2.1 Schr?dinger方程89

11.2.2 无微扰态、中心场近似和自旋轨道90

11.2.3 零级近似波函数91

11.2.4 电子组态92

11.2.5 一级近似波函数93

11.2.6 L-S耦合94

11.3 谱项及属于谱项的波函数98

11.3.1 谱项的推算98

11.3.2 各种组态的谱项100

11.3.3 属于谱项的波函数ψ(LMLSMS)101

11.3.4 阶梯算符公式的推导102

11.3.5 d2组态各谱项的ψ(LMLSMS)的推导104

11.3.6 投影算符法推导ψ(LMLSMS)107

11.4 谱项的能量110

11.4.1 Slater行列式和波函数的矩阵元110

11.4.2 原子的能量矩阵元114

11.4.3 谱项的能量115

11.4.4 已充满壳层的作用和互补组态的能量118

11.4.5 组态平均能量122

11.4.6 Slater积分的实验拟合130

11.5 磁相互作用131

11.5.1 考虑旋-轨耦合的氢原子131

11.5.2 多电子原子中的磁相互作用135

11.5.3 j-j耦合138

11.5.4 Zeeman效应141

11.5.5 原子光谱的指认144

参考文献146

习题146

第12章 原子结构的自洽场计算151

12.1 闭壳层组态的Hartree-Fock方程153

12.1.1 自洽场近似和Hartree方程153

12.1.2 闭壳层组态的Hartree-Fock方程的变分推导155

12.1.3 Hartree-Fock方程的一些性质160

12.1.4 Koopmans定理164

12.1.5 Brillouin定理168

12.2 开壳层组态的Hartree-Fock方法170

12.2.1 自旋非限制的Hartree-Fock方法170

12.2.2 限制的Hartree-Fock方法171

12.3 径向Hartree-Fock方程177

12.3.1 原子的Hartree-Fock计算177

12.3.2 超Hartree-Fock方法180

12.4 径向Hartree-Fock方程的求解184

12.4.1 径向Hartree-Fock方程的性态184

12.4.2 齐次方程的数值解法188

12.4.3 径向Hartree-Fock方程的数值解法202

12.4.4 径向Hartree-Fock方程的分析解法207

参考文献208

习题209

第13章 分子的自洽场计算213

13.1 分子电子结构概述215

13.1.1 Born-Oppenheimer近似与单粒子近似215

13.1.2 分子的电子多重态结构和谱项217

13.1.3 分子谱项的能量和波函数222

13.2 分子轨道的自洽场方程224

13.2.1 LCAO-MO近似224

13.2.2 闭壳层组态的Hartree-Fock-Roothaan方程225

13.2.3 开壳层组态的限制性Hartree-Fock-Roothaan方程230

13.2.4 非限制性Hartree-Fock-Roothaan方程233

13.2.5 自旋态的纯化235

13.3 分子轨道的自洽场计算237

13.3.1 自洽场计算过程237

13.3.2 一个具体的例子——氨分子的自洽场计算239

13.3.3 基函数的选择245

13.3.4 分子积分的存储和使用259

13.3.5 本征值方程的求解265

13.3.6 迭代收敛问题272

13.3.7 直接自洽场计算方法278

13.4 分子对称性的利用280

13.4.1 简化分子积分的计算280

13.4.2 节省内存285

13.4.3 简化本征值方程的求解287

13.5 物理量的计算290

13.5.1 体系总能量与分子几何构型优化290

13.5.2 分子振动频率293

13.5.3 电离能和激发能296

13.5.4 电荷密度分布与其形貌学分析299

13.5.5 电子布居分析305

13.6 定域分子轨道315

13.6.1 正则(离域)分子轨道与定域分子轨道的等价性315

13.6.2 定域准则.正交定域轨道317

13.6.3 紧缩的非正交定域轨道324

13.6.4 直接计算自洽场定域轨道的方法332

参考文献334

习题336

第14章 电子相关问题339

14.1 电子相关作用341

14.1.1 物理图像341

14.1.2 电子相关能342

14.2 组态相互作用344

14.2.1 波函数的组态展开344

14.2.2 波函数的歧点条件347

14.2.3 动态相关能的计算349

14.2.4 非动态相关能的计算,多组态自洽场方法352

14.3 组态相互作用计算中的一些具体问题357

14.3.1 概述357

14.3.2 基组选择358

14.3.3 分子轨道基组的选择359

14.3.4 组态函数的选择360

14.3.5 分子积分的计算和变换363

14.3.6 构成有正确对称性的组态函数364

14.3.7 Hamilton矩阵元的计算369

14.3.8 Hamilton矩阵的对角化373

14.3.9 大小一致性和大小广延性375

14.4 约化密度矩阵和自然轨道377

14.4.1 约化密度矩阵377

14.4.2 CI波函数的密度矩阵381

14.4.3 自然轨道387

14.4.4 近似自然轨道394

14.5 微扰理论方法398

14.5.1 多体微扰理论398

14.5.2 图解方法403

14.5.3 Brueckner-Goldstone定理407

14.5.4 对部分高级项求和与微扰-变分方法413

14.6 耦合簇理论417

14.6.1 波函数的耦合簇展开417

14.6.2 耦合电子对近似419

14.6.3 耦合簇理论423

14.6.4 几种理论方法的比较425

14.7 量子蒙特卡罗方法428

14.7.1 随机变量的概率分布函数和概率分布密度函数429

14.7.2 实现随机变量按指定概率分布密度函数取值的方法431

14.7.3 变分Monte Carlo方法434

14.7.4 扩散Monte Carlo方法438

14.7.5 试用波函数447

14.7.6 与其他方法的比较451

14.8 显含电子间距离坐标的相关能计算方法452

14.8.1 波函数显含电子间距离坐标的必要性452

14.8.2 超相关方法453

14.8.3 相关穴方法460

参考文献463

习题464

第15章 密度泛函理论方法467

15.1 基态密度泛函理论469

15.1.1 历史回顾469

15.1.2 Hohenberg-Kohn定理475

15.1.3 约束搜索方法定义的能量密度泛函477

15.1.4 Kohn-Sham方程478

15.1.5 Janak定理——过渡态方法479

15.1.6 一些化学概念的明确定义481

15.1.7 自旋密度泛函理论485

15.1.8 相对论性密度泛函理论487

15.2 近似密度泛函的显表达式490

15.2.1 局域密度近似(LDA泛函)490

15.2.2 含密度梯度校正的泛函(GGA类泛函)494

15.2.3 含密度梯度和动能密度的交换-相关能泛函(meta-GGA类泛函)497

15.2.4 绝热关联.杂化型泛函500

15.2.5 优化有效势方法502

15.2.6 交换-相关能密度泛函应该满足的一般性条件505

15.2.7 近似能量密度泛函的质量评估508

15.2.8 目前存在的主要问题和前景展望513

15.3 密度泛函计算方法515

15.3.1 求解Kohn-Sham(K-S)方程的计算过程515

15.3.2 库仑势的计算516

15.3.3 矩阵元的数值计算方法520

15.3.4 能量差值的直接计算522

15.3.5 含重元素体系的密度泛函计算524

15.4 激发态与电子多重态结构的能级530

15.4.1 系综密度泛函理论与过渡态方法530

15.4.2 多重态结构能级的计算535

15.4.3 绝热关联-微扰理论方法540

15.4.4 MRCI-DFT方法543

15.4.5 含时密度泛函理论方法546

参考文献551

第16章 有效芯势方法555

16.1 原子模型势558

16.1.1 非相对论模型势558

16.1.2 相对论模型势562

16.2 原子赝势和赝波函数568

16.2.1 原子赝势和赝波函数568

16.2.2 形状一致赝势(模守恒势)572

16.2.3 可分离赝势、超软赝势576

16.2.4 能量一致赝势580

16.3 分子和固体的有效芯势计算581

16.3.1 分子和固体的有效芯势方程581

16.3.2 芯极化赝势583

参考文献585

热门推荐